65 research outputs found

    The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution

    Get PDF
    © 2019, Cancer Research UK. Background: Previous studies have reported up to 50% of ductal carcinoma in situ (DCIS), is HER2 positive, but the frequency of HER2-positive invasive breast cancer (IBC) is lower. The aim of this study is to characterise HER2 status in DCIS and assess its prognostic value. Methods: HER2 status was evaluated in a large series of DCIS (n = 868), including pure DCIS and DCIS associated with IBC, prepared as tissue microarrays (TMAs). HER2 status was assessed using immunohistochemistry (IHC) and chromogenic in situ hybridisation (CISH). Results: In pure DCIS, HER2 protein was over-expressed in 9% of DCIS (3+), whereas 15% were HER2 equivocal (2+). Using CISH, the final HER2 status was positive in 20%. In mixed DCIS, HER2 amplification of the DCIS component was detected in 15% with amplification in the invasive component of only 12%. HER2-positive DCIS was associated with features of aggressiveness (p < 0.0001) and more frequent local recurrence (p = 0.03). On multivariate analysis, combined HER2+/Ki67+ profile was an independent predictor of local recurrence (p = 0.006). Conclusions: The frequency of HER2 positivity in DCIS is comparable to IBC- and HER2-positive DCIS is associated with features of poor prognosis. The majority of HER2 over-expression in DCIS is driven by gene amplification

    Chemokine (C-C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma

    Get PDF
    Some previous studies have reported that the chemokine (C-C motif) receptor 7 (CCR7) plays a role in breast cancer, is associated with lymph node metastasis and drives the site of distant metastasis. However, the impact of its expression on patient outcome and its association with tumour infiltrating inflammatory cells remain to be validated. We evaluated CCR7 protein expression by immunohistochemistry in a large well characterized cohort (n = 866) of early invasive primary breast cancers. CCR7 was expressed in the cytoplasm and membrane of tumour cells. We observed a weak positive association of high CCR7 expression when in either cellular component, but not both together, with axillary lymph node stage 3 tumours (p = 0.043). Logistic regression analysis of lymph node stage revealed no independent predictive value for CCR7 expression. CCR7 expression was higher in HER2 positive tumours (p = 0.03) and associated with positive CD68+ FOXP3+ tumour infiltrating cells. CCR7 staining was negatively associated with CD3+ cells. There was no significant association of CCR7 expression with breast cancer recurrence or survival. We conclude that while CCR7 is not a useful biomarker for predicting lymph node metastasis, it may reflect altered intra- and inter-cellular signalling related to the immune microenvironment. The subcellular localization of CCR7 appears to affect the nature of these interactions

    Plasticity of fimbrial genotype and serotype within populations of <em>Bordetella pertussis</em>:analysis by paired flow cytometry and genome sequencing

    Get PDF
    The fimbriae of Bordetella pertussis are required for colonization of the human respiratory tract. Two serologically distinct fimbrial subunits, Fim2 and Fim3, considered important vaccine components for many years, are included in the Sanofi Pasteur 5-component acellular pertussis vaccine, and the World Health Organization recommends the inclusion of strains expressing both fimbrial serotypes in whole-cell pertussis vaccines. Each of the fimbrial major subunit genes, fim2, fim3, and fimX, has a promoter poly(C) tract upstream of its −10 box. Such monotonic DNA elements are susceptible to changes in length via slipped-strand mispairing in vitro and in vivo, which potentially causes on/off switching of genes at every cell division. Here, we have described intra-culture variability in poly(C) tract lengths and the resulting fimbrial phenotypes in 22 recent UK B. pertussis isolates. Owing to the highly plastic nature of fimbrial promoters, we used the same cultures for both genome sequencing and flow cytometry. Individual cultures of B. pertussis contained multiple fimbrial serotypes and multiple different fimbrial promoter poly(C) tract lengths, which supports earlier serological evidence that B. pertussis expresses both serotypes during infection.</jats:p

    Legumain is an independent predictor for invasive recurrence in breast ductal carcinoma in situ

    Get PDF
    © 2018, United States & Canadian Academy of Pathology. Legumain is a proteolytic enzyme that plays a role in the regulation of cell proliferation in invasive breast cancer. Studies evaluating its role in ductal carcinoma in situ (DCIS) are lacking. Here, we aimed to characterize legumain protein expression in DCIS and evaluate its prognostic significance. Legumain was assessed immunohistochemically in a tissue microarray of a well-characterized cohort of DCIS (n = 776 pure DCIS and n = 239 DCIS associated with invasive breast cancer (DCIS-mixed)). Legumain immunoreactivity was scored in tumor cells and surrounding stroma and related to clinicopathological parameters and patient outcome. High legumain expression was observed in 23% of pure DCIS and was associated with features of high-risk DCIS including higher nuclear grade, comedo necrosis, hormone receptor negativity, HER2 positivity, and higher proliferation index. Legumain expression was higher in DCIS associated with invasive breast cancer than in pure DCIS (p < 0.0001). In the DCIS-mixed cohort, the invasive component showed higher legumain expression than the DCIS component (p < 0.0001). Legumain was an independent predictor of shorter local recurrencefree interval for all recurrences (p = 0.0003) and for invasive recurrences (p = 0.002). When incorporated with other risk factors, legumain provided better patient risk stratification. High legumain expression is associated with poor prognosis in DCIS and could be a potential marker to predict DCIS progression to invasive disease

    The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ

    Get PDF
    Background: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour progression. CTSA is differentially expressed at the mRNA level between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to characterise CTSA protein expression in DCIS and evaluate its prognostic significance. Methods: A large cohort of DCIS (n=776 for pure DCIS and n=239 for DCIS associated with IBC (DCIS/IBC)) prepared as tissue microarray was immunohistochemically stained for CTSA. Results: High CTSA expression was observed in 48% of pure DCIS. High expression was associated with features of poor DCIS prognosis including younger age at diagnosis (less than 50 years), higher nuclear grade, hormone receptor negativity, HER2 positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. High CTSA expression was associated with shorter recurrence free interval (RFI) (p=0.0001). In multivariate survival analysis for patients treated with breast conserving surgery, CTSA was an independent predictor of shorter RFI (p=0.015). DCIS associated with IBC showed higher CTSA expression than pure DCIS (p=0.04). In the DCIS/IBC cohort, CTSA expression was higher in the invasive component than DCIS component (p less than 0.0001). Conclusion: CTSA is not only associated with aggressive behaviour and poor outcome in DCIS but also a potential marker to predict co-existing invasion in DCIS

    The prognostic significance of immune microenvironment in breast ductal carcinoma in situ

    Get PDF
    BackgroundThe role of different subtypes of tumour infiltrating lymphocytes (TILs) in breast ductal carcinoma in situ (DCIS) is still poorly defined. This study aimed to assess the prognostic significance of B and T lymphocytes and immune checkpoint proteins expression in DCIS.MethodsA well characterised DCIS cohort (n = 700) with long-term follow-up comprising pure DCIS (n = 508) and DCIS mixed with invasive carcinoma (IBC; n = 192) were stained immunohistochemically for CD20, CD3, CD4, CD8, FOXP3, PD1 and PDL1. Copy number variation and TP53 mutation status were assessed in a subset of cases (n = 58).ResultsCD3+ lymphocytes were the predominant cell subtype in the pure DCIS cohort, while FOXP3 showed the lowest levels. PDL1 expression was mainly seen in the stromal TILs. Higher abundance of TILs subtypes was associated with higher tumour grade, hormone receptor negativity and HER2 positivity. Mutant TP53 variants were associated with higher levels of stromal CD3+, CD4+ and FOXP3+ cells. DCIS coexisting with invasive carcinoma harboured denser stromal infiltrates of all immune cells and checkpoint proteins apart from CD4+ cells. Stromal PD1 was the most differentially expressed protein between DCIS and invasive carcinoma (Z = 5.8, p

    Towards comprehensive understanding of bacterial genetic diversity:large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis

    Get PDF
    Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis , whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis . We found 590 amplifications in M. tuberculosis , and like B. pertussis , these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis . This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis , highlighting the need for a more holistic understanding of bacterial genetics

    Aurora Kinase A Is an Independent Predictor of Invasive Recurrence in Breast Ductal Carcinoma in situ

    Get PDF
    Aurora Kinase A (AURKA/STK15) has a role in centrosome duplication and is a regulator of mitotic cell proliferation. It is over-expressed in breast cancer and other cancers, however; its role in ductal carcinoma in situ (DCIS) remains to be defined. This study aims to characterize AURKA protein expression in DCIS and evaluate its prognostic significance. Methods: AURKA was assessed immunohistochemically in a large well-characterized cohort of DCIS (n = 776 pure DCIS and 239 DCIS associated with invasive breast cancer [DCIS-mixed]) with long-term follow-up data (median = 105 months) and basic molecular characterization. Results: High AURKA expression was observed in 15% of DCIS cases and was associated with features of aggressiveness including larger tumour size, high nuclear grade, hormone receptor negativity, HER2 positivity, and high Ki67 proliferation index. AURKA expression was higher in DCIS associated with invasive breast cancer than in pure DCIS (p < 0.0001). In the DCIS-mixed cohort, the invasive component showed higher AURKA expression than the DCIS component (p < 0.0001). Outcome analysis revealed that AURKA was a predictor of invasive recurrence (p = 0.002). Conclusion: High AURKA expression is associated with poor prognosis in DCIS and might be a potential marker to predict DCIS progression to invasive disease

    Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study

    Get PDF
    Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of collagen fibre remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ (DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of the geometric characteristics of collagen surrounding DCIS. A large well-characterized cohort of DCIS comprising pure DCIS (n=610) and DCIS co-existing with invasive carcinoma (n=180) were histochemically stained for collagen using picrosirius red. ImageJ software was used to assess collagen density, degree of collagen fibre dispersion and directionality in relation to DCIS ducts’ boundary. We developed a collagen prognostic index and evaluated its prognostic significance. A poor index was observed in 24% of the pure DCIS and was associated with determinants of high-risk DCIS including higher grade, comedo necrosis, hormonal receptor negativity, HER2 positivity and high proliferation index. High index was associated with overexpression of the collagen remodeling protein prolyl-4-hydroxlase alpha 2 and the hypoxia inducible factor 1α. DCIS co-existing with invasive carcinoma had a higher collagen prognostic index than pure DCIS (
    • …
    corecore