17 research outputs found

    Mitotic regulation by NIMA-related kinases.

    Get PDF
    The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets

    Novel insights into the mechanisms of mitotic spindle assembly by Nek kinases

    Full text link
    The mitotic spindle is the apparatus upon which chromosomes are segregated during cell division. We have discovered new roles for two members of the NIMA-Related Kinase (NEK) family in different molecular processes of spindle assembly. Moreover, loss of these proteins leads to segregation errors that drive cancer progression

    EML Proteins in Microtubule Regulation and Human Disease

    Get PDF
    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104, 445–450; J. Cell Sci. (1987) 87(Pt 1), 71–84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8, 110; Dev. Genes Evol. (2000) 210, 2–10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy

    Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis

    Full text link
    Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis

    Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact.

    Full text link
    At the onset mitosis in higher eukaryotes, the nuclear envelope (NE) undergoes dramatic deconstruction to allow separation of duplicated chromosomes. Studies have shown that during this process of nuclear envelope breakdown (NEBD), the extensive protein networks of the nuclear lamina are disassembled through phosphorylation of lamins and several inner nuclear membrane (INM) proteins. The LINC complex, composed of SUN and nesprin proteins, is involved in multiple interactions at the NE and plays vital roles in nuclear and cellular mechanics by connecting the nucleus to the cytoskeleton. Here, we show that SUN1, located in the INM, undergoes mitosis-specific phosphorylation on at least 3 sites within its nucleoplasmic N-terminus. We further identify Cdk1 as the kinase responsible for serine 48 and 333 phosphorylation, while serine 138 is phosphorylated by Plk1. In mitotic cells, SUN1 loses its interaction with N-terminal domain binding partners lamin A/C, emerin, and short nesprin-2 isoforms. Furthermore, a triple phosphomimetic SUN1 mutant displays increased solubility and reduced retention at the NE. In contrast, the central LINC complex interaction between the SUN1 C-terminus and the KASH domain of nesprin-2 is maintained during mitosis. Together, these data support a model whereby mitotic phosphorylation of SUN1 disrupts interactions with nucleoplasmic binding partners, promoting disassembly of the nuclear lamina and, potentially, its chromatin interactions. At the same time, our data add to an emerging picture that the core LINC complex plays an active role in NEBD

    Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification

    Full text link
    Centrosome duplication is licensed by the disengagement, or ‘uncoupling’, of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation during G2 arrest is dependent on polo-like kinase 1 (Plk1)-mediated degradation of the APC/C inhibitor, early mitotic inhibitor 1 (Emi1), Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulates centriole disengagement in response to hydroxyurea or DNA damage-induced cell-cycle arrest and this leads to centrosome amplification. However, the reduplication of disengaged centrioles is dependent on cyclin-dependent kinase 2 (Cdk2) activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Although release from these arrests leads to mitotic entry, the presence of disengaged and/or amplified centrosomes results in the formation of abnormal mitotic spindles that lead to chromosome mis-segregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability

    Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain.

    Get PDF
    Proteins of the echinoderm microtubule associated protein-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule (MT) network. EML1-4 consist of WD40 repeats and an N-terminal region containing a putative coiled-coil. Recurrent gene rearrangements in non-small cell lung cancer (NSCLC) fuse EML4 to anaplastic lymphoma kinase (ALK) causing expression of several oncogenic fusion variants. The fusions have constitutive ALK activity due to self-association through the EML4 coiled-coil. We have determined crystal structures of the coiled-coils from EML2 and EML4, which describe the structural basis of both EML self-association and oncogenic EML4-ALK activation. The structures reveal a trimeric oligomerization state directed by a conserved pattern of hydrophobic residues and salt bridges. We show that the trimerization domain (TD) of EML1 is necessary and sufficient for self-association. The TD is also essential for MT binding, however this property requires an adjacent basic region. These observations prompted us to investigate MT association of EML4-ALK and EML1-ABL1 fusions in which variable portions of the EML component are present. Uniquely, EML4-ALK variant 3, which includes the TD and basic region of EML4 but none of the WD40 repeats, was localized to MTs, both when expressed recombinantly and in a patient-derived NSCLC cell line (H2228). This raises the question of whether the mislocalization of ALK activity to MTs might influence downstream signalling and malignant properties of cells. Furthermore, the structure of EML4 TD may enable the development of protein-protein interaction inhibitors targeting the trimerization interface, providing a possible avenue towards therapeutic intervention in EML4-ALK NSCLC

    OFD1 and flotillins are integral components of a ciliary signaling protein complex organized by polycystins in renal epithelia and odontoblasts.

    Full text link
    Mutation of the X-linked oral-facial-digital syndrome type 1 (OFD1) gene is embryonic lethal in males and results in craniofacial malformations and adult onset polycystic kidney disease in females. While the OFD1 protein localizes to centriolar satellites, centrosomes and basal bodies, its cellular function and how it relates to cystic kidney disease is largely unknown. Here, we demonstrate that OFD1 is assembled into a protein complex that is localized to the primary cilium and contains the epidermal growth factor receptor (EGFR) and domain organizing flotillin proteins. This protein complex, which has similarity to a basolateral adhesion domain formed during cell polarization, also contains the polycystin proteins that when mutant cause autosomal dominant polycystic kidney disease (ADPKD). Importantly, in human ADPKD cells where mutant polycystin-1 fails to localize to cilia, there is a concomitant loss of localization of polycystin-2, OFD1, EGFR and flotillin-1 to cilia. Together, these data suggest that polycystins are necessary for assembly of a novel flotillin-containing ciliary signaling complex and provide a molecular rationale for the common renal pathologies caused by OFD1 and PKD mutations

    EGF-induced centrosome separation promotes mitotic progression and cell survival

    Get PDF
    Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes, and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis, and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy because cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5
    corecore