256 research outputs found

    X-ray crystallographic studies of therapeutic enzymes: nitroreductase and AKR1C3

    Get PDF
    The EscherichiaEscherichia colicoli enzyme nitroreductase has been proposed as a candidate for the Gene-Directed Enzyme Prodrug Therapy approach in treating cancer. Structural studies on the enzyme were instigated in a first step towards improving enzyme activity. The enzyme was crystallized with the substrate analogue, nicotinic acid, and the structures of three crystal forms obtained. The fold has a mixed a/P structure, with a molecule of nicotinic acid bound next to the FMN cofactor. Several active site residues were identified as candidates for mutation. This procedure produced many mutant enzymes with increased catalytic activity. One double and four single mutants were chosen from these and crystal structures determined. The resulting information from this, and the establishment of a proof of principle, provides the basis for iterative cycles of enzyme improvement. The human hydroxysteroid dehydrogenase AKR1C3 has been proposed to play a role in prostaglandin metabolism. Its inhibition by non-steroidal anti-inflammatory drugs may be important in a tumour differentiation strategy. AKR1C3 was crystallized, and the structure solved with bound nucleotide cofactor and several inhibitors, including the drugs indomethacin and flufenamic acid. Having obtained information on drug binding to AKR1C3, selective inhibitors can be designed, avoiding inhibition of "housekeeping" enzymes such as cyclo-oxygenases

    Impact of soaking gentamicin-containing collagen implants on potential antimicrobial efficacy

    Get PDF
    AbstractBackgroundThe purpose of this study is to evaluate how wetting of Collatamp (a gentamicin-containing collagen implant [GCCI]) impacts on the gentamicin content of the implant and whether this affects its potential antibacterial efficacy.MethodsGCCI (Collatamp®, EUSA Pharma [Europe], Oxford, United Kingdom) containing 130 mg gentamicin and 280 mg collagen (10 cm × 10 cm) were immersed in 300 mL normal saline for up to 6h. At set times after immersion the GCCI were removed, the saline diluted in normal human serum and the gentamicin content assayed by a validated immunoassay (Cedia, Microgenics Ltd, UK) to provide an estimate of the loss from each implant. The mean concentration data were then fitted to an exponential decay model (WinNonLin, Pharsight, US).ResultsAfter a very short immersion period there was significant loss of gentamicin from the implants with a mean loss of 6.7% at 2 s, increasing to 40.5% at 1 min and essentially total loss by 6 h of immersion. Loss of gentamicin followed a complex elution profile, with elution half-lives ranging from 50 s on initial immersion to 99 min late in the elution period.ConclusionThis study provides clear evidence that even a short period of dipping of Collatamp implants, and probably other GCCI, before insertion into the patient results in a significant loss of gentamicin which may be of clinical significance unless the period of soaking is very short. We therefore recommend that wetting of these implants before insertion is not undertaken

    Therapeutic drug monitoring in the past 40 years of the JAC

    Get PDF
    Since the Journal was first published in 1975, papers addressing therapeutic drug monitoring (TDM) have been a regular feature. Initially they focused on laboratory aspects of drug concentration measurement then they changed more to the application of TDM in a clinical setting. Over its history, the Journal has provided its readership with the latest technological and scientific advances in TDM and has helped to drive changes in TDM that have directly impacted on patient care. These have varied from improvement in the quality of antimicrobial measurements through better identification of dosage regimens and TDM targets that help predict outcome and adverse events

    Excessive gas exchange impairment during exercise in a subject with a history of bronchopulmonary dysplasia and high altitude pulmonary edema

    Get PDF
    A 27-year-old male subject (V(O2 max)), 92% predicted) with a history of bronchopulmonary dysplasia (BPD) and a clinically documented case of high altitude pulmonary edema (HAPE) was examined at rest and during exercise. Pulmonary function testing revealed a normal forced vital capacity (FVC, 98.1% predicted) and diffusion capacity for carbon monoxide (D(L(CO)), 91.2% predicted), but significant airway obstruction at rest [forced expiratory volume in 1 sec (FEV(1)), 66.5% predicted; forced expiratory flow at 50% of vital capacity (FEF(50)), 34.3% predicted; and FEV(1) /FVC 56.5%] that was not reversible with an inhaled bronchodilator. Gas exchange worsened from rest to exercise, with the alveolar to arterial P(O2) difference (AaD(O2)) increasing from 0 at rest to 41 mmHg at maximal normoxic exercise (VO(2) = 41.4 mL/kg/min) and from 11 to 31 mmHg at maximal hypoxic exercise (VO(2) = 21.9 mL/kg/min). Arterial P(O2) decreased to 67.8 and 29.9 mmHg at maximal normoxic and hypoxic exercise, respectively. These data indicate that our subject with a history of BPD is prone to a greater degree of exercise-induced arterial hypoxemia for a given VO(2) and F(I(O2)) than healthy age-matched controls, which may increase the subject's susceptibility to high altitude illness

    GOing Forward With the Cardiac Conduction System Using Gene Ontology

    Get PDF
    The cardiac conduction system (CCS) comprises critical components responsible for the initiation and coordination of the action potential. Aberrant CCS development can cause conduction abnormalities, including sick sinus syndrome and atrioventricular and bundle branch blocks. Gene Ontology (GO; http://geneontology.org/) is an invaluable global bioinformatics resource which can provide structured, computable knowledge describing the functions of gene products. Many gene products are known be involved in CCS development; however, this information is not comprehensively captured by GO. Our study aimed to describe the specific roles of essential proteins that have been reported in the literature to be involved with development and/or function of the CCS. 14 proteins were prioritised for GO annotation which led to the curation of 15 peer-reviewed primary experimental articles using carefully selected GO terms. 152 descriptive GO annotations, including those describing sinoatrial node and atrioventricular node development were created and submitted to the GO Consortium database. A functional enrichment analysis of the 35 proteins known to have a role in CCS confirmed that this work has improved the in silico interpretation of this CCS dataset. Our contribution to the GO database may help elucidate the key mechanisms involved in CCS disorders as previous annotation projects have focussed predominantly on development of the heart rather than that of the CCS. This work may improve future heart disease investigations applying high-throughput methods such as genome-wide association studies analysis, proteomics and transcriptomics

    A rotary mechanism for allostery in bacterial hybrid malic enzymes

    Get PDF
    This project was funded by BBSRC studentship 1500753 to C.J.H. and a BBSRC David Phillips fellowship to P.J.M. (BB/S010122/1).Bacterial hybrid malic enzymes (MaeB grouping, multidomain) catalyse the transformation of malate to pyruvate, and are a major contributor to cellular reducing power and carbon flux. Distinct from other malic enzyme subtypes, the hybrid enzymes are regulated by acetyl-CoA, a molecular indicator of the metabolic state of the cell. Here we solve the structure of a MaeB protein, which reveals hybrid enzymes use the appended phosphotransacetylase (PTA) domain to form a hexameric sensor that communicates acetyl-CoA occupancy to the malic enzyme active site, 60 Å away. We demonstrate that allostery is governed by a large-scale rearrangement that rotates the catalytic subunits 70° between the two states, identifying MaeB as a new model enzyme for the study of ligand-induced conformational change. Our work provides the mechanistic basis for metabolic control of hybrid malic enzymes, and identifies inhibition-insensitive variants that may find utility in synthetic biology.Publisher PDFPeer reviewe

    AltitudeOmics: Baroreflex Sensitivity During Acclimatization to 5,260 m.

    Get PDF
    <b>Introduction:</b> Baroreflex sensitivity (BRS) is essential to ensure rapid adjustment to variations in blood pressure (BP). Little is known concerning the adaptive responses of BRS during acclimatization to high altitude at rest and during exercise. <b>Methods:</b> Twenty-one healthy sea-level residents were tested near sea level (SL, 130 m), the 1st (ALT1) and 16th day (ALT16) at 5,260 m using radial artery catheterization. BRS was calculated using the sequence method (direct interpretation of causal link between BP and heartrate). At rest, subjects breathed a hyperoxic mixture (250 mmHg O <sub>2</sub> , end tidal) to isolate the preponderance of CO <sub>2</sub> chemoreceptors. End-tidal CO <sub>2</sub> varied from 20 to 50 mmHg to assess peripheral chemoreflex. Rebreathing provoked incremental increase in CO <sub>2</sub> , increasing BP to assess baroreflex. During incremental cycling exercise to exhaustion, subjects breathed room air. <b>Results:</b> Resting BRS decreased in ALT1 which was exacerbated in ALT16. This decrease in ALT1 was reversible upon additional inspired CO <sub>2</sub> , but not in ALT16. BRS decrease during exercise was greater and occurred at lower workloads in ALT1 compared to SL. At ALT16, this decrease returned toward SL values. <b>Discussion/Conclusion:</b> This study is the first to report attenuated BRS in acute hypoxia, exacerbated in chronic hypoxia. In ALT1, hypocapnia triggered BRS reduction whilst in ALT16 resetting of chemoreceptor triggered BRS reduction. The exercise BRS resetting was impaired in ALT1 but normalized in ALT16. These BRS decreases indicate decreased control of BP and may explain deteriorations of cardiovascular status during exposure to high altitude

    The lifestyle switch protein Bd0108 of Bdellovibrio bacteriovorus is an intrinsically disordered protein

    Get PDF
    Bdellovibrio bacteriovorus is a δ-proteobacterium that preys upon Salmonella spp., E. coli, and other Gram-negative bacteria. Bdellovibrio can grow axenically (host-independent, HI, rare and mutation-driven) or subsist via a predatory lifecycle (host-dependent, HD, the usual case). Upon contact with prey, B. bacteriovorus enters the host periplasm from where it slowly drains the host cytosol of nutrients for its own replication. At the core of this mechanism is a retractile pilus, whose architecture is regulated by the protein Bd0108 and its interaction with the neighboring gene product Bd0109. Deletion of bd0108 results in negligible pilus formation, whereas an internal deletion (the one that instigates host-independence) causes mis-regulation of pilus length. These mutations, along with a suite of naturally occurring bd0108 mutant strains, act to control the entry to HI growth. To further study the molecular mechanism of predatory regulation, we focused on the apparent lifecycle switch protein Bd0108. Here we characterize the solution structure and dynamics of Bd0108 using nuclear magnetic resonance (NMR) spectroscopy complemented with additional biophysical methods. We then explore the interaction between Bd0108 and Bd0109 in detail utilizing isothermal titration calorimetry (ITC) and NMR spectroscopy. Together our results demonstrate that Bd0108 is an intrinsically disordered protein (IDP) and that the interaction with Bd0109 is of low affinity. Furthermore, we observe that Bd0108 retains an IDP nature while binding Bd0109. From our data we conclude that Bdellovibrio bacteriovorus utilizes an intrinsically disordered protein to regulate its pilus and control predation signaling
    corecore