48 research outputs found
How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes
Battery electrode surfaces are generally coated with electronically
insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at
the electrode-surface film interface in response to the voltage, which adds
complexity to the "electric double layer" (EDL). We apply Density Functional
Theory (DFT) to investigate how the applied voltage is manifested as changes in
the EDL at atomic lengthscales, including charge separation and interfacial
dipole moments. Illustrating examples include Li(3)PO(4), Li(2)CO(3), and
Li(x)Mn(2)O(4) thin-films on Au(111) surfaces under ultrahigh vacuum
conditions. Adsorbed organic solvent molecules can strongly reduce voltages
predicted in vacuum. We propose that manipulating surface dipoles, seldom
discussed in battery studies, may be a viable strategy to improve electrode
passivation. We also distinguish the computed potential governing electrons,
which is the actual or instantaneous voltage, and the "lithium cohesive energy"
based voltage governing Li content widely reported in DFT calculations, which
is a slower-responding self-consistency criterion at interfaces. This
distinction is critical for a comprehensive description of electrochemical
activities on electrode surfaces, including Li+ insertion dynamics, parasitic
electrolyte decomposition, and electrodeposition at overpotentials.Comment: 35 pages. 10 figure
Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles
Bubble formation and growth on a water-splitting semiconductor photoelectrode under illumination with above-bandgap radiation provide a direct measurement of the gas-evolving reaction rate. Optical microscopy was used to record the bubble growth on single-crystal strontium titanate immersed in basic aqueous electrolyte and illuminated with UV light at 351/364 nm from a focused argon laser. By analyzing the bubble size as a function of time, the water-splitting reaction rate was determined for varying light intensities and was compared to photocurrent measurements. Bubble nucleation was explored on an illuminated flat surface, as well as the subsequent light scattering and electrode shielding due to the bubble. This technique allows a quantitative examination of the actual gas evolution rate during photoelectrochemical water splitting, independent of current measurements
Light to Electrons to Bonds: Imaging Water Splitting and Collecting Photoexcited Electrons
Photoelectrochemical devices can store solar energy as chemical bonds in fuels, but more control over the materials involved is needed for economic feasibility. Both efficient capture of photon energy into electron energy and subsequent electron transfer and bond formation are necessary, and this thesis explores various steps of the process. To look at the electrochemical fuel formation step, the spatially-resolved reaction rate on a water-splitting electrode was imaged during operation at a few-micron scale using optical microscopy. One method involved localized excitation of a semiconductor photoanode and recording the growth rate of bubbles to determine the local reaction rate. A second method imaged the reactant profile with a pH-sensitive fluorophore in the electrolyte to determine the local three-dimensional pH profile at patterned electrocatalysts in a confocal microscope. These methods provide insight on surface features optimal for efficient electron transfer into fuel products.
A second set of studies examined the initial process of photoexcited electron transport and collection. An independent method to measure the minority carrier diffusion length in semiconductor photoelectrodes was developed, in which a wedge geometry is back illuminated with a small scanned spot. The diffusion length can be determined from the exponential decrease of photocurrent with thickness, and the method was demonstrated on solid-state silicon wedge diodes, as well as tungsten oxide thin-film wedge photoanodes. Finally, the possibility of absorbing and collecting sub-bandgap illumination via plasmon-enhanced hot carrier internal photoemission was modeled to predict the energy conversion efficiency. The effect of photon polarization on emission yield was experimentally tested using gold nanoantennas buried in silicon, and the correlation was found to be small.</p
CD40mAb adjuvant induces a rapid antibody response that may be beneficial in post-exposure prophylaxis
Active vaccination can be effective as a post-exposure prophylaxis, but the rapidity of the immune response induced, relative to the incubation time of the pathogen, is critical. We show here that CD40mAb conjugated to antigen induces a more rapid specific antibody response than currently used immunological adjuvants, alum and monophosphoryl lipid Aâ˘
Solar energy conversion via hot electron internal photoemission in metallic nanostructure: Efficiency estimates
Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%â10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations
Synchronous micromechanically resonant programmable photonic circuits
Programmable photonic integrated circuits (PICs) are emerging as powerful
tools for the precise manipulation of light, with applications in quantum
information processing, optical range finding, and artificial intelligence. The
leading architecture for programmable PICs is the mesh of Mach-Zehnder
interferometers (MZIs) embedded with reconfigurable optical phase shifters.
Low-power implementations of these PICs involve micromechanical structures
driven capacitively or piezoelectrically but are limited in modulation
bandwidth by mechanical resonances and high operating voltages. However,
circuits designed to operate exclusively at these mechanical resonances would
reduce the necessary driving voltage from resonantly enhanced modulation as
well as maintaining high actuation speeds. Here we introduce a synchronous,
micromechanically resonant design architecture for programmable PICs, which
exploits micromechanical eigenmodes for modulation enhancement. This approach
combines high-frequency mechanical resonances and optically broadband phase
shifters to increase the modulation response on the order of the mechanical
quality factor , thereby reducing the PIC's power consumption,
voltage-loss product, and footprint. The architecture is useful for broadly
applicable circuits such as optical phased arrays, x , and x
photonic switches. We report a proof-of-principle programmable 1 x 8 switch
with piezoelectric phase shifters at specifically targeted mechanical
eigenfrequencies, showing a full switching cycle of all eight channels spaced
by approximately 11 ns and operating at >3x average modulation enhancement
across all on-chip modulators. By further leveraging micromechanical devices
with high , which can exceed 1 million, our design architecture should
enable a new class of low-voltage and high-speed programmable PICs.Comment: 18 pages, 5 figures, 5 supplementary figure
High-speed photonic crystal modulator with non-volatile memory via structurally-engineered strain concentration in a piezo-MEMS platform
Numerous applications in quantum and classical optics require scalable,
high-speed modulators that cover visible-NIR wavelengths with low footprint,
drive voltage (V) and power dissipation. A critical figure of merit for
electro-optic (EO) modulators is the transmission change per voltage, dT/dV.
Conventional approaches in wave-guided modulators seek to maximize dT/dV by the
selection of a high EO coefficient or a longer light-material interaction, but
are ultimately limited by nonlinear material properties and material losses,
respectively. Optical and RF resonances can improve dT/dV, but introduce added
challenges in terms of speed and spectral tuning, especially for high-Q
photonic cavity resonances. Here, we introduce a cavity-based EO modulator to
solve both trade-offs in a piezo-strained photonic crystal cavity. Our approach
concentrates the displacement of a piezo-electric actuator of length L and a
given piezoelectric coefficient into the PhCC, resulting in dT/dV proportional
to L under fixed material loss. Secondly, we employ a material deformation that
is programmable under a "read-write" protocol with a continuous, repeatable
tuning range of 5 GHz and a maximum non-volatile excursion of 8 GHz. In
telecom-band demonstrations, we measure a fundamental mode linewidth = 5.4 GHz,
with voltage response 177 MHz/V corresponding to 40 GHz for voltage spanning
-120 to 120 V, 3dB-modulation bandwidth of 3.2 MHz broadband DC-AC, and 142 MHz
for resonant operation near 2.8 GHz operation, optical extinction down to
min(log(T)) = -25 dB via Michelson-type interference, and an energy consumption
down to 0.17 nW/GHz. The strain-enhancement methods presented here are
applicable to study and control other strain-sensitive systems
Multiplexed control of spin quantum memories in a photonic circuit
A central goal in many quantum information processing applications is a
network of quantum memories that can be entangled with each other while being
individually controlled and measured with high fidelity. This goal has
motivated the development of programmable photonic integrated circuits (PICs)
with integrated spin quantum memories using diamond color center spin-photon
interfaces. However, this approach introduces a challenge in the microwave
control of individual spins within closely packed registers. Here, we present a
quantum-memory-integrated photonics platform capable of (i) the integration of
multiple diamond color center spins into a cryogenically compatible, high-speed
programmable PIC platform; (ii) selective manipulation of individual spin
qubits addressed via tunable magnetic field gradients; and (iii) simultaneous
control of multiple qubits using numerically optimized microwave pulse shaping.
The combination of localized optical control, enabled by the PIC platform,
together with selective spin manipulation opens the path to scalable quantum
networks on intra-chip and inter-chip platforms.Comment: 10 pages, 4 figure
Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes
Measurement of the photocurrent as a function of the thickness of a light absorber has been shown herein both theoretically and experimentally to provide a method for determination of the minority-carrier diffusion length of a sample. To perform the measurement, an illuminated spot of photons with an energy well above the band gap of the material was scanned along the thickness gradient of a wedge-shaped, rear-illuminated semiconducting light absorber. Photogenerated majority carriers were collected through a back-side transparent ohmic contact, and a front-side liquid or Schottky junction collected the photogenerated minority carriers. Calculations showed that the diffusion length could be evaluated from the exponential variation in photocurrent as a function of the thickness of the sample. Good agreement was observed between experiment and theory for a solid-state silicon Schottky junction measured using this method. As an example for the application of the technique to semiconductor/liquid-junction photoelectrodes, the minority-carrier diffusion length was determined for graded thickness, sputtered tungsten trioxide and polished bismuth vanadate films under back-illumination in contact with an aqueous electrolyte. This wedge technique does not require knowledge of the spectral absorption coefficient, doping, or surface recombination velocity of the sample