A central goal in many quantum information processing applications is a
network of quantum memories that can be entangled with each other while being
individually controlled and measured with high fidelity. This goal has
motivated the development of programmable photonic integrated circuits (PICs)
with integrated spin quantum memories using diamond color center spin-photon
interfaces. However, this approach introduces a challenge in the microwave
control of individual spins within closely packed registers. Here, we present a
quantum-memory-integrated photonics platform capable of (i) the integration of
multiple diamond color center spins into a cryogenically compatible, high-speed
programmable PIC platform; (ii) selective manipulation of individual spin
qubits addressed via tunable magnetic field gradients; and (iii) simultaneous
control of multiple qubits using numerically optimized microwave pulse shaping.
The combination of localized optical control, enabled by the PIC platform,
together with selective spin manipulation opens the path to scalable quantum
networks on intra-chip and inter-chip platforms.Comment: 10 pages, 4 figure