1,591 research outputs found

    Promoting Public Health In The Context Of The “Obesity Epidemic”: False Starts And Promising New Directions

    Get PDF
    In the battle to combat obesity rates in the United States, several misconceptions have dominated policy initiatives. We address those misconceptions, including the notion that restrictive diets lead to long-term weight loss, that stigmatizing obesity is an effective strategy for promoting weight reduction, and that weight and physical health should be considered synonymous with one another. In offering correctives to each of these points, we draw on psychological science to suggest new policies that could be enacted at both the local and national levels. Instead of policies that rely solely on individual willpower, which is susceptible to failure, we recommend those that make use of environmental changes to reduce the amount of willpower necessary to achieve healthy behavior. Ultimately, the most effective policies will promote health rather than any arbitrary level of weight

    Radial Trends in IMF-Sensitive Absorption Features in Two Early-Type Galaxies: Evidence for Abundance-Driven Gradients

    Get PDF
    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies' central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000-5500 \AA \, and 8000-10,000 \AA. We present spatially resolved measurements of the dwarf-sensitive spectral indices NaI (8190 \AA) and Wing-Ford FeH (9915 \AA), as well as indices for species of H, C2_2, CN, Mg, Ca, TiO, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in \alpha-enhancement, matching widely observed trends for massive early-type galaxies. The NaI index and the CN1_1 index at 4160 \AA \, exhibit significantly steeper gradients, with a break at r0.1reffr \sim 0.1 r_{\rm eff} (r300r \sim 300 pc). Inside this radius NaI strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of FeH to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside 0.1reff0.1 r_{\rm eff} if the IMF is a single power law. While gradients in the mass function above 0.4M\sim 0.4 M_\odot may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies' centers.Comment: Accepted for publication in ApJ. Updates from v1 include an expanded comparison of measured index strengths to SPS models. 20 page body + 7 page appendix + references. Includes 25 figure

    Testing the Metal of Late-Type Kepler Planet Hosts with Iron-Clad Methods

    Get PDF
    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6sigma confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 of the solar value. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of core accretion, rather than insufficient solids to form a core.Comment: 9 pages, 5 figures. Accepted to Ap

    Virus isolation studies suggest short-term variations in abundance in natural cyanophage populations of the Indian Ocean

    Get PDF
    Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count. In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup

    Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia

    Full text link
    The orbits of binary stars and planets, particularly eccentricities and inclinations, encode the angular momentum within these systems. Within stellar multiple systems, the magnitude and (mis)alignment of angular momentum vectors among stars, disks, and planets probes the complex dynamical processes guiding their formation and evolution. The accuracy of the \textit{Gaia} catalog can be exploited to enable comparison of binary orbits with known planet or disk inclinations without costly long-term astrometric campaigns. We show that \textit{Gaia} astrometry can place meaningful limits on orbital elements in cases with reliable astrometry, and discuss metrics for assessing the reliability of \textit{Gaia} DR2 solutions for orbit fitting. We demonstrate our method by determining orbital elements for three systems (DS Tuc AB, GK/GI Tau, and Kepler-25/KOI-1803) using \textit{Gaia} astrometry alone. We show that DS Tuc AB's orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Tau's orbit might be misaligned with their respective protoplanetary disks, and the Kepler-25/KOI-1803 orbit is not aligned with either component's transiting planetary system. We also demonstrate cases where \textit{Gaia} astrometry alone fails to provide useful constraints on orbital elements. To enable broader application of this technique, we introduce the python tool \texttt{lofti\_gaiaDR2} to allow users to easily determine orbital element posteriors.Comment: 18 pages, 10 figures, accepted for publication in Ap

    Magnetic inflation and stellar mass. V. Intensification and saturation of M-dwarf absorption lines with Rossby number

    Get PDF
    In young Sun-like stars and field M-dwarf stars, chromospheric and coronal magnetic activity indicators such as Hα, X-ray, and radio emission are known to saturate with low Rossby number (Ro lesssim 0.1), defined as the ratio of rotation period to convective turnover time. The mechanism for the saturation is unclear. In this paper, we use photospheric Ti i and Ca i absorption lines in the Y band to investigate magnetic field strength in M dwarfs for Rossby numbers between 0.01 and 1.0. The equivalent widths of the lines are magnetically enhanced by photospheric spots, a global field, or a combination of the two. The equivalent widths behave qualitatively similar to the chromospheric and coronal indicators: we see increasing equivalent widths (increasing absorption) with decreasing Ro and saturation of the equivalent widths for Ro lesssim 0.1. The majority of M dwarfs in this study are fully convective. The results add to mounting evidence that the magnetic saturation mechanism occurs at or beneath the stellar photosphere.Published versio

    A physically motivated and empirically calibrated method to measure effective temperature, metallicity, and Ti abundance of M dwarfs

    Get PDF
    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analysis of M-dwarf stars. Empirically-calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R~25,000), Y-band (~1 micron) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH bandhead. We used abundances measured from widely-separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively and is calibrated for 3200 K < Teff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.Comment: accepted for publication in ApJ, all synthetic spectra available at http://people.bu.edu/mveyette/phoenix
    corecore