210 research outputs found

    Aerodynamics of a Supersonic Projectile in Proximity to a Solid Surface

    Get PDF
    Flow around a Mach 2.4 NATO 5.56 mm projectile in close proximity to a ground plane was investigated using computational fluid dynamics for a direct numerical reproduction of live-range experiments. The numerical approach was validated against both the live-range tests and subsequent wind-tunnel experiments. A nonspinning half-model and a full, spinning projectile were examined to clarify the influence of rotation. Multiple ground clearances were tested to obtain clear trends in changes to the aerodynamic coefficients, and the three-dimensional propagation and reflection of the shock waves were considered in detail. The behavior of the flow in the near wake was also studied as ground clearance was reduced. Ground proximity was found to significantly increase the drag force acting on the projectile, as well as generate a force normal to the ground and an increased side force, when ground clearance was less than one diameter. For clearances between approximately 0.4 and 1 diameter, the pitching moment produced was nose-down. For lower clearances, a more distinct nose-up trend was produced. The generated side force was orders of magnitude lower than the normal and drag forces

    Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy

    Get PDF
    The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.</p

    Changes in environmental tobacco smoke (ETS) exposure over a 20-year period: cross-sectional and longitudinal analyses

    Get PDF
    AIMS:  To examine long‐term changes in environmental tobacco smoke (ETS) exposure in British men between 1978 and 2000, using serum cotinine. DESIGN:  Prospective cohort: British Regional Heart Study. SETTING:  General practices in 24 towns in England, Wales and Scotland. PARTICIPANTS:  Non‐smoking men: 2125 studied at baseline [questionnaire (Q1): 1978–80, aged 40–59 years], 3046 studied 20 years later (Q20: 1998–2000, aged 60–79 years) and 1208 studied at both times. Non‐smokers were men reporting no current smoking with cotinine < 15 ng/ml at Q1 and/or Q20. MEASUREMENTS: Serum cotinine to assess ETS exposure. FINDINGS:  In cross‐sectional analysis, geometric mean cotinine level declined from 1.36 ng/ml [95% confidence interval (CI): 1.31, 1.42] at Q1 to 0.19 ng/ml (95% CI: 0.18, 0.19) at Q20. The prevalence of cotinine levels ≤ 0.7 ng/ml [associated with low coronary heart disease (CHD) risk] rose from 27.1% at Q1 to 83.3% at Q20. Manual social class and northern region of residence were associated with higher mean cotinine levels both at Q1 and Q20; older age was associated with lower cotinine level at Q20 only. Among 1208 persistent non‐smokers, cotinine fell by 1.47 ng/ml (95% CI: 1.37, 1.57), 86% decline. Absolute falls in cotinine were greater in manual occupational groups, in the Midlands and Scotland compared to southern England, although percentage decline was very similar across groups. CONCLUSIONS:  A marked decline in ETS exposure occurred in Britain between 1978 and 2000, which is likely to have reduced ETS‐related disease risks appreciably before the introduction of legislation banning smoking in public places

    Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies

    Get PDF
    The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin

    A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk adjustment and mortality prediction in studies of critical care are usually performed using acuity of illness scores, such as Acute Physiology and Chronic Health Evaluation II (APACHE II), which emphasize physiological derangement. Common risk adjustment systems used in administrative datasets, like the Charlson index, are entirely based on the presence of co-morbid illnesses. The purpose of this study was to compare the discriminative ability of the Charlson index to the APACHE II in predicting hospital mortality in adult multisystem ICU patients.</p> <p>Methods</p> <p>This was a population-based cohort design. The study sample consisted of adult (>17 years of age) residents of the Calgary Health Region admitted to a multisystem ICU between April 2002 and March 2004. Clinical data were collected prospectively and linked to hospital outcome data. Multiple regression analyses were used to compare the performance of APACHE II and the Charlson index.</p> <p>Results</p> <p>The Charlson index was a poor predictor of mortality (C = 0.626). There was minimal difference between a baseline model containing age, sex and acute physiology score (C = 0.74) and models containing either chronic health points (C = 0.76) or Charlson index variations (C = 0.75, 0.76, 0.77). No important improvement in prediction occurred when the Charlson index was added to the full APACHE II model (C = 0.808 to C = 0.813).</p> <p>Conclusion</p> <p>The Charlson index does not perform as well as the APACHE II in predicting hospital mortality in ICU patients. However, when acuity of illness scores are unavailable or are not recorded in a standard way, the Charlson index might be considered as an alternative method of risk adjustment and therefore facilitate comparisons between intensive care units.</p

    Outcomes of selective nonoperative management of civilian abdominal gunshot wounds: a systematic review and meta-analysis

    Get PDF
    Abstract Background Although mandatory laparotomy has been standard of care for patients with abdominal gunshot wounds (GSWs) for decades, this approach is associated with non-therapeutic operations, morbidity, and long hospital stays. This systematic review and meta-analysis sought to summarize outcomes of selective nonoperative management (SNOM) of civilian abdominal GSWs. Methods We searched electronic databases (March 1966–April 1, 2017) and reference lists of articles included in the systematic review for studies reporting outcomes of SNOM of civilian abdominal GSWs. We meta-analyzed the associated risks of SNOM-related failure (defined as laparotomy during hospital admission), mortality, and morbidity across included studies using DerSimonian and Laird random-effects models. Between-study heterogeneity was assessed by calculating I2 statistics and conducting tests of homogeneity. Results Of 7155 citations identified, we included 41 studies [n = 22,847 patients with abdominal GSWs, of whom 6777 (29.7%) underwent SNOM]. The pooled risk of failure of SNOM in hemodynamically stable patients without a reduced level of consciousness or signs of peritonitis was 7.0% [95% confidence interval (CI) = 3.9–10.1%; I2 = 92.6%, homogeneity p  0.99). In patients who failed SNOM, the pooled estimate of the risk of therapeutic laparotomy was 68.0% (95% CI = 58.3–77.7%; I2 = 91.5%; homogeneity p < 0.001). Risks of failure of SNOM were lowest in studies that evaluated patients with right thoracoabdomen (3.4%; 95% CI = 0–7.0%; I2 = 0%; homogeneity p = 0.45), flank (7.0%; 95% CI = 3.9–10.1%), and back (3.1%; 95% CI = 0–6.5%) GSWs and highest in those that evaluated patients with anterior abdomen (13.2%; 95% CI = 6.3–20.1%) GSWs. In patients who underwent mandatory abdominopelvic computed tomography (CT), the pooled risk of failure was 4.1% versus 8.3% in those who underwent selective CT (p = 0.08). The overall sample-size-weighted mean hospital length of stay among patients who underwent SNOM was 6 days versus 10 days if they failed SNOM or developed an in-hospital complication. Conclusions SNOM of abdominal GSWs is safe when conducted in hemodynamically stable patients without a reduced level of consciousness or signs of peritonitis. Failure of SNOM may be lower in patients with GSWs to the back, flank, or right thoracoabdomen and be decreased by mandatory use of abdominopelvic CT scans

    A Hippocampus-Accumbens Tripartite Neuronal Motif Guides Appetitive Memory in Space

    Get PDF
    Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1→NAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1→NAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior

    Properties and identification of antibiotic drug targets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analysed 48 non-redundant antibiotic target proteins from all bacteria, 22 antibiotic target proteins from <it>E. coli </it>only and 4243 non-drug targets from <it>E. coli </it>to identify differences in their properties and to predict new potential drug targets.</p> <p>Results</p> <p>When compared to non-targets, bacterial antibiotic targets tend to be long, have high β-sheet and low α-helix contents, are polar, are found in the cytoplasm rather than in membranes, and are usually enzymes, with ligases particularly favoured. Sequence features were used to build a support vector machine model for <it>E. coli </it>proteins, allowing the assignment of any sequence to the drug target or non-target classes, with an accuracy in the training set of 94%. We identified 319 proteins (7%) in the non-target set that have target-like properties, many of which have unknown function. 63 of these proteins have significant and undesirable similarity to a human protein, leaving 256 target like proteins that are not present in humans.</p> <p>Conclusions</p> <p>We suggest that antibiotic discovery programs would be more likely to succeed if new targets are chosen from this set of target like proteins or their homologues. In particular, 64 are essential genes where the cell is not able to recover from a random insertion disruption.</p

    Mycobacterium ulcerans disease: experience with primary oral medical therapy in an Australian cohort

    Get PDF
    Mycobacterium ulcerans (MU) is responsible for disfiguring skin infections which are challenging to treat. The recommended treatment for MU has continued to evolve from surgery to remove all involved tissue, to the use of effective combination oral antibiotics with surgery as required. Our study describes the oral medical treatment utilised for consecutive cases of MU infection over a 15 month period at our institution, in Victoria, Australia. Managing patients primarily with oral antibiotics results in high cure rates and excellent cosmetic outcomes. The success with medical treatment reported in this study will aid those treating cases of MU infection, and will add to the growing body of knowledge about the relative roles of antibiotics and surgery for treating this infection
    corecore