136 research outputs found
Recommended from our members
Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.
This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research
Surface diffusion in catalysts probed by APGSTE NMR
In this work we report the application of a recently developed experimental protocol using Pulsed Field Gradient (PFG) Nuclear Magnetic Resonance (NMR) techniques to simultaneously assess bulk pore and surface diffusion coefficients in liquid saturated
porous catalysts. This method has been developed to study solvent effects on the diffusion of methyl ethyl ketone (MEK) in mesoporous 1 wt% Pd/Al2O3 catalyst trilobes. The selection of solvents used in this work is known to have a complex effect on reaction rates and hence catalyst performance in heterogeneous liquid phase catalysis. Here, we report the bulk pore and surface diffusion characteristics of MEK, water and isopropyl alcohol (IPA) in 1 wt% Pd/Al2O3 catalyst trilobes. The results show that the physicochemical interactions of molecules in the porous catalyst matrix are very different for the different molecules. We also find that the mobility of water appears to be affected strongest by the catalyst surface
Recommended from our members
In situ reaction monitoring in heterogeneous catalysts by a benchtop NMR spectrometer.
Understanding the reactivity and mass transport properties of porous heterogenous catalysts is important for the development of new materials. Whereas MRI has previously been used to correlate chemical kinetics and hydrodynamics under operando conditions, this paper demonstrates that a modern benchtop NMR spectrometer is a suitable alternative to obtain diverse reaction information in porous heterogeneous catalyst materials on a smaller scale. Besides information about the chemical conversion within the pores, it can also be used to study changes of surface interaction by T1/T2 NMR relaxometry techniques and changes in mass transport by PFG NMR from a single chemical reaction
Recommended from our members
Spatially-resolved 1H NMR relaxation-exchange measurements in heterogeneous media.
In the last decades, the 1H NMR T2-T2 relaxation-exchange (REXSY) technique has become an essential tool for the molecular investigation of simple and complex fluids in heterogeneous porous solids and soft matter, where the mixing-time-evolution of cross-correlated T2-T2 peaks enables a quantitative study of diffusive exchange kinetics in multi-component systems. Here, we present a spatially-resolved implementation of the T2-T2 correlation technique, named z-T2-T2, based on one-dimensional spatial mapping along z using a rapid frequency-encode imaging scheme. Compared to other phase-encoding methods, the adopted MRI technique has two distinct advantages: (i) is has the same experimental duration of a standard (bulk) T2-T2 measurement, and (ii) it provides a high spatial resolution. The proposed z-T2-T2 method is first validated against bulk T2-T2 measurements on homogeneous phantom consisting of cyclohexane uniformly imbibed in finely-sized α-Al2O3 particles at a spatial resolution of 0.47 mm; thereafter, its performance is demonstrated, on a layered bed of multi-sized α-Al2O3 particles, for revealing spatially-dependent molecular exchange kinetics properties of intra- and inter-particle cyclohexane as a function of particle size. It is found that localised z-T2-T2 spectra provide well resolved cross peaks whilst such resolution is lost in standard bulk T2-T2 data. Future prospective applications of the method lie, in particular, in the local characterisation of mass transport phenomena in multi-component porous media, such as rock cores and heterogeneous catalysts
Sub-sampling of NMR Correlation and Exchange Experiments
Sub-sampling is applied to simulated - NMR signals and its influence
on inversion performance is evaluated. For this different levels of
sub-sampling were employed ranging from the fully sampled signal down to only
less than two percent of the original data points. This was combined with
multiple sample schemes including fully random sampling, truncation and a
combination of both. To compare the performance of different inversion
algorithms, the so-generated sub-sampled signals were inverted using Tikhonov
regularization, modified total generalized variation (MTGV) regularization,
deep learning and a combination of deep learning and Tikhonov regularization.
Further, the influence of the chosen cost function on the relative inversion
performance was investigated. Overall, it could be shown that for a vast
majority of instances, deep learning clearly outperforms regularization based
inversion methods, if the signal is fully or close to fully sampled. However,
in the case of significantly sub-sampled signals regularization yields better
inversion performance than its deep learning counterpart with MTGV clearly
prevailing over Tikhonov. Additionally, fully random sampling could be
identified as the best overall sampling scheme independent of the inversion
method. Finally, it could also be shown that the choice of cost function does
vastly influence the relative rankings of the tested inversion algorithms
highlighting the importance of choosing the cost function accordingly to
experimental intentions
MAGNETIC RESONANCE (MR) MEASUREMENTS OF THE MASS FLUX IN GAS-SOLID FLUIDIZED BEDS
Magnetic Resonance (MR) Imaging was used to measure the time-averaged voidage and particle velocity in a 3D gas-solid fluidized bed. Two different distributors were used. The mass-flux through a horizontal plane was calculated by combining the local voidage and particle velocity measurements. Based on the conservation of mass it was possible to give an error in the combined voidage and particle velocity measurements. It was found that the error in the mass flux was usually small (\u3c 5%), albeit increasing with increasing fluidization velocities
Mechanisms of mutant β-catenin in endometrial cancer progression
Endometrial carcinoma (EC) is the most diagnosed gynecological malignancy in Western countries. Both incidence and mortality rates of EC have steadily risen in recent years. Despite generally favorable prognoses for patients with the endometrioid type of EC, a subset of patients has been identified with decreased progression-free survival. Patients in this group are distinguished from other endometrioid EC patients by the presence of exon 3 hotspot mutations in CTNNB1, the gene encoding for the β-catenin protein. β-catenin is an evolutionarily conserved protein with critical functions in both adherens junctions and Wnt-signaling. The exact mechanism by which exon 3 CTNNB1 mutations drive EC progression is not well understood. Further, the potential contribution of mutant β-catenin to adherens junctions’ integrity is not known. Additionally, the magnitude of worsened progression-free survival in patients with CTNNB1 mutations is context dependent, and therefore the importance of this subset of patients can be obscured by improper categorization. This review will examine the history and functions of β-catenin, how these functions may change and drive EC progression in CTNNB1 mutant patients, and the importance of this patient group in the broader context of the disease
- …