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Abstract 

 

In the last decades, the 
1
H NMR       relaxation-exchange (REXSY) technique has 

become an essential tool for the molecular investigation of simple and complex fluids in 

heterogeneous porous solids and soft matter, where the mixing-time-evolution of cross-

correlated       peaks enables a quantitative study of diffusive exchange kinetics in multi-

component systems. Here, we present a spatially-resolved implementation of the       

correlation technique, named        , based on one-dimensional spatial mapping along   

using a rapid frequency-encode imaging scheme. Compared to other phase-encoding 

methods, the adopted MRI technique has two distinct advantages: (i) is has the same 

experimental duration of a standard (bulk)       measurement, and (ii) it provides a high 

spatial resolution. The proposed         method is first validated against bulk       

measurements on homogeneous phantom consisting of cyclohexane uniformly imbibed in 

finely-sized α-Al2O3 particles at a spatial resolution of 0.47 mm; thereafter, its performance is 

demonstrated, on a layered bed of multi-sized α-Al2O3 particles, for revealing spatially-

dependent molecular exchange kinetics properties of intra- and inter-particle cyclohexane as 

a function of particle size. It is found that localised         spectra provide well resolved 

cross peaks whilst such resolution is lost in standard bulk       data. Future prospective 

applications of the method lie, in particular, in the local characterisation of mass transport 

phenomena in multi-component porous media, such as rock cores and heterogeneous 

catalysts.  
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1. Introduction 

 

Spatial variations in physico-chemical processes, such as adsorption, diffusion, 

capillary transport and flow, are ubiquitous in porous, condensed and soft matter. However, 

in most cases, an effective or averaged property is used to describe the behaviour of the 

system because local information cannot be obtained. It is now well-established that 

spatially-resolved nuclear magnetic resonance (NMR) techniques offer the opportunity to 

obtain a localised description from within optically-opaque media. In particular, 
1
H NMR has 

been used extensively to investigate in situ multiphase fluid processes over a broad range of 

relevant spatial dimensions, from the local pore- and molecular-scales probed by 1D and 2D 

NMR relaxometry and diffusometry, up to the full object-sizes explored in Magnetic 

Resonance Imaging (MRI) [1,2]. Those complementary NMR approaches have been widely 

applied as separate measurements on, e.g., water/oil-bearing reservoir rocks [3], wetting/non-

wetting phases in activated catalysts [4–6], hydrated cementitious or geo-polymer pastes [7], 

clay suspensions in natural sedimentary rocks [8], cell membranes [9] and swelling 

pharmaceutical tablets [10,11]. Three decades ago, the different concepts of 1D time-domain 

NMR and MRI were combined for the first time into multiple-echo pulse sequences based on 

rapid frequency-encoding imaging, to obtain real-time uniaxial   - and   -mapping for 

studies of colloidal filtration in rock cores [8,12–14] and for clinical applications [15–20]. 

Thereafter, Balcom and co-workers implemented a variety of methods for 1D   -mapping in 

high magnetic susceptibility media based on a pure phase-encode imaging approach, devoid 

of echo-time limitations and image distortions arising from signal acquisition in the presence 

of frequency encoding (read-out) gradients. The latter methods included CPMG-prepared 

SPRITE (Single Point Ramped Imaging with    Enhancement), SE-SPI (Spin-Echo Single 

Point Imaging) and DANTE-Z-CPMG pulse sequences [21–24]. Among those techniques, 

SE-SPI provided improved temporal resolution and signal-to-noise (SNR) ratio, while shorter 

   components (< 1 ms) could be accessed by CPMG-prepared SPRITE. Both techniques 

resulted in  an improved spatial resolution (~ mm) when compared with DANTE-Z-CPMG (~ 

cm) and were extended by Balcom and Petrov to CPMG measurements spatially-resolved in 

two dimensions [25,26]. Mitchell and co-workers exploited both rapid frequency-encoded [3] 

and SE-SPI [27] 1D   -mapping for quantitatively monitoring oil-recovery during core 

floods. Diffusion MRI techniques based on filter-exchange pulse gradient spin-echo NMR 
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combined with slice-selective pulses were recently developed by Topgaard and co-workers 

[9] to map the apparent exchange rates of water in cell membranes, where distinct 

compartments often have poor contrast in NMR relaxation times.   

The first experiment in which two time-domain dimensions were combined with a 

Fourier dimension was introduced by Washburn and Callaghan, with spatial resolution at the 

scale of local self-diffusion in 2D relaxation-exchange (     ) measurements achieved by 

encoding the displacement propagator [28,29]. Concurrently, Venturi and Hills introduced 

the first spatially-localised       experiment (called SPACE-     ), which combined 

volume-selective (i.e., 3D imaging) methods with low-field 2D relaxometry [30]. The authors 

then exploited multi-slicing methods for single-shot acquisition of standard       spectra in 

homogeneous systems, where each slice was associated with an inversion recovery time 

increment [31]; the ultra-fast approach was further extended by Telkki and co-workers to 

diffusion-relaxation (    ) measurements [32]. Zhang and Blümich [33] developed the 

first spatially-resolved      correlation measurements based on the use of a 2D phase-

encode imaging approach, and Balcom and co-workers [34] have implemented slice-selective 

1D MRI      measurements. Recently, Benjamini et al. [35] presented the first 2D MRI 

diffusion-exchange (   ) correlation measurements in a nerve tissue phantom, obtained by 

combining a slice-selective 2D spin-echo MRI sequence with data under-sampling methods 

[36].   

Among the various multi-dimensional time-domain 
1
H NMR techniques [14] that 

have been developed since the first implementation of a fast numerical algorithm for 2D 

Inverse Laplace Transform (ILT) by Venkataramanan, Song and Hürlimann [37] and 

Hürlimann and Venkataramanan [38], pseudo-3D experiments for the study of diffusive 

exchange, like      , represent undoubtedly the most complex and detail-rich approaches 

[14,39–42]. The       pulse sequence consists of two CPMG loops separated by a 

longitudinal storage period called mixing time (    ), during which diffusive coupling and/or 

chemical exchange may take place [43–45]. Data processing via 2D ILT yields       

correlation plots with on-diagonal intensities arising from molecules that either remain within 

the same local environment or undergo exchange between distinct physical domains having 

the same    values during     . Cross-peaks on opposite sides of the diagonal arise from 

molecules that have diffused throughout sites with distinct    relaxation environments [2]. To 

obtain information about mass transfer and molecular exchange kinetics, the build-up of the 

cross-peak intensities upon increasing      may be analysed. Therefore, various exact and 
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numerical approaches to the analysis of multi-site       exchange processes inspired by 

chemical exchange studies [46,47] have been discussed extensively by previous workers 

[42,43,48–50]. A factor that complicates       data analysis is that, in analogy to 1D 

diffusion or relaxation measurements, under intermediate- or fast-exchange regimes [51] the 

“apparent”       peak positions and relative intensities can be tangibly different from their 

“true” values in the absence of exchange [48,52]. 

A number of variants of the       technique have been implemented in the last 

decade: propagator-resolved relaxation-exchange measurements [28,29,53]; compressed-

sensing sampling on       schemes [54,55]; and faster 1D variants in the form of   -

filtered       measurements [56]. In the following we report the first implementation and 

successful validation of spatially-resolved       relaxation-exchange measurements 

[2,43,44]. The experiment, here referred to as        , uses a frequency-encoding 

scheme which enables high spatial resolution over the full sensitive region of the radio-

frequency (RF) coil, while retaining the same experiment duration as in bulk       

acquisitions. The case studies presented here show the potential of the method for localising 

intra- and inter-particle diffusive exchange within inhomogeneous catalyst packed beds. 

  

2. Experimental  

 

2.1. Materials  

 

α-Al2O3 cylindrical rings (Johnson-Matthey, PLC) with a nominal inner diameter of 2 

mm, outer diameter of 5 mm, and average length of approximately 5-7 mm were used as 

model porous material. The surface area was ~ 5.4 m
2
/g, and the pellets had an average 

porosity of 62% with a homogeneous pore-size distribution centred around 175   15 nm, as 

provided by Mercury Intrusion Porosimetry (MIP). Cyclohexane (Sigma Aldrich, purity > 

99.8%) was used as-received for sample preparation. The combination of macroporous α-

Al2O3 nearly devoid of surface hydroxyls with an apolar pore-filling liquid was chosen with 

the purpose of reducing the importance of surface interactions over that of diffusive coupling 

effects, and to detect well-resolved cross-peaks over a broad, yet experimentally accessible, 

   range. Furthermore, cyclohexane is devoid of any  -coupling that could possibly affect the 

CPMG-based         measurement described in sub-section 2.2.1 [57].  
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To demonstrate the application of the         pulse sequence, α-Al2O3 cylindrical 

rings were crushed and sieved to different particle sizes and two distinct phantoms were 

prepared in 23 mm o.d. glass tubes. Phantom 1 was used for validating the method on a 

homogeneous assembly of fine particles, whilst phantom 2 contained a four layered vertical 

packing of particles with different particle size  , labelled in Fig. 1 as: I,   < 300 m; II, 300 

m <   < 710 m; III, 710 m <   < 850 m and IV with as-received cylindrical rings. Each 

set of particles was initially dried in oven at 105 °C overnight. For the model homogeneous 

phantom 1, first the dry mass was measured, then the minimum amount of cyclohexane was 

added to minimize excess bulk liquid content and the phantom was weighed again to estimate 

the amount of intra-particle cyclohexane uptake. Excess bulk cyclohexane was then added to 

completely submerge the particles, and the NMR tube was then capped and tightly wrapped 

with PTFE tape to prevent cyclohexane evaporation during the NMR experiments. 

 The same liquid loading procedure was adopted for each set of particles in phantom 

2. Care was taken to ensure good sample homogeneity within the four sets of particles 

vertically stacked in the glass tube ensuring a nearly flat separation between adjacent layers. 

Regions II and III were 0.6   0.1 cm in height, while regions I and IV was made thicker in 

order to align the separation between regions II and III with the centre of the FOV, as shown 

in Fig. 1a. Figure 1b shows a standard 
1
H 2D image of a 1 mm thick   -slice taken through 

the centre of phantom 2 as depicted in Fig. 1a. Figure 1c shows the 
1
H NMR  -profile of the 

sample obtained by standard 1D single spin-echo frequency-encoded pulse sequence. The 

black dots indicate the center of the selected   position within each of the four layers 

located at  1.09 cm (I),  0.33 cm (II), 0.33 cm (III), and 1.09 cm (IV). The labels I, II, III 

and IV are used for referring to the respective measured slices.  
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Figure 1.  (a) Optical image of the alumina/cyclohexane phantom used for this study.  (b) 2D 

1
H NMR    spin-echo image taken through (a). (c) 1D 

1
H NMR profile of (a) along the 

vertical   direction, showing the four regions described in the main text.  

 

We note that an average mass increase of (61   4) % of the respective dry mass was 

measured for the fine particles of phantom 1 and for all the sets of crushed particles in 

phantom 2, in good agreement with the nominal porosity (~ 62 %) of the α-Al2O3 used here: 

this confirmed that, within the experimental error, uniform and nearly complete pore-filling 

was achieved. 

 

2.2. 
1
H magnetic resonance 

 

All 
1
H NMR measurements were performed using a Bruker AV-400 spectrometer,  

operating at a 
1
H resonance frequency of 400.23 MHz and equipped with a three-axis 

shielded gradient system that provided maximum gradient strength      = 1.46 T/m. A 25 

mm diameter birdcage 
1
H RF coil was used for excitation and signal detection.  

 

2.2.1 Implementation of the         NMR pulse sequence  

 

Spatially-resolved 
1
H       exchange relaxation data [2,43,44] were acquired by 

using the pulse sequence illustrated in Fig. 2 which consists of two CPMG-based encoding 

periods for preparation and detection separated by a mixing (or storage) time of duration 

    , during which molecular exchange takes place along with longitudinal relaxation. The 

same inter-echo spacing, namely     3.14 ms, was used in both CPMG loops, yielding total 

durations equal to         and         , respectively. The echo index   of the 

preparation loop was varied from 1 to 1282 in 160 steps, linearly up to the first 128 steps to 

fully sample up to    ~ 400 ms, and then logarithmically up to    ~ 4 s. For each  , 1024 

echoes were acquired in the second CPMG loop. The duration of the 90° pulse was set to 78 

µs. A 6.4 ms homospoil gradient with strength of 0.4 T/m was applied along the       

directions to suppress unwanted coherences during the      period. One-dimensional spatial-

resolution was obtained along the  -axis, by introducing a trapezoidal dephasing gradient 

   of duration         , applied between the third (restore) 90° pulse and the first 180° pulse 
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of the second CPMG loop, and a trapezoidal rephasing gradient of duration         , applied 

between all the  =1024 successive 180° pulses of the second CPMG loop. 

 

Figure 2 - Schematic of the         pulse sequence, where frequency-encoded spin-echo 

 -profiles during the second CPMG train were recorded by applying a dephasing and a 

rephasing gradient in the read-direction, here Gz.  

 

The strength of the rephasing gradient was determined by the desired FOV of the 

performed measurements as          
  

 

 

         
 , where   is the 

1
H gyromagnetic ratio 

and     is the dwell-time between complex acquired points. The corresponding strength of 

the dephasing gradient,         , was calibrated so as to provide a dephasing gradient area 

equal to half that of the rephasing gradient. When necessary, a finer trim of          was 

performed in order to ensure that the gradient echoes were centred within the acquisition 

window.  

 A FOV of 60 mm and sweep width of 100 kHz were chosen, producing a          of 

0.042 T/m. Hence, with          = 1.71 ms and          = 0.79 ms, as imposed by the timings 

for the second CPMG loop and by including a gradient ramp of 40 μs,          was 

calibrated to 0.039 T/m. 256 complex points were sampled during the signal acquisition 

giving a spatial resolution of 0.47 mm.  

 Four averages were acquired according to the four-step phase-cycle shown in Fig. 2; 

the recycle delay was set to 13 s to enable full    relaxation of the bulk liquid component. 

Data acquisition was then repeated at 18      values logarithmically varied between 8 ms and 

1.2 s. Each experiment took approximately 2.8 h to acquire.  
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2.2.2 2D MRI measurements 

 

  -weighted 
1
H images of the sample were acquired by using a multi-slice multi-echo 

(MSME) CPMG-based sequence (Bruker Biospin, Germany) with echo time of 3.15 ms for 8 

echoes. A repetition time of 3 s was used and a 128 × 128 data matrix with a slice thickness 

0.94 mm was acquired. For    images, the FOV was set to 60 mm and 30 mm along   and   

directions, respectively; along  , the spatial resolution was set to 0.47 mm. For xy (axial) 

images, the same acquisition parameters as above were used, but a FOV of 25 mm was 

chosen along both   and   directions. All the images were acquired in Paravision 4.0 (Bruker 

Biospin Ltd) and processed in MATLAB™.  

 

2.3. Data Processing  

 

Raw data were first processed in MATLAB™ in order to extract the spatially-

dependent 2D matrices of correlated transverse magnetization decays.         data were 

Fourier-transformed in the spatial dimension and a spatially-dependent 0
th
-order correction of 

the phase,     , was applied to all the measured profiles by locally maximizing, at each  -

position within the FOV, the respective area under the first (   1)    decay vs.    . The 

real part of the phased profiles was then retained for further data processing by 2D ILT. The 

noise level, provided as input for the 2D ILT algorithm, was calculated as the standard 

deviation of the imaginary part of the phased profiles. In order to improve the SNR, four 

adjacent       decays were added and processed by 2D ILT to obtain       spectra 

representative of a 1.42 mm thick slice, as shown in Fig. 3b.  

The spatially-dependent       relaxation time distributions were then extracted in 

MATLAB™ using the mathematical method introduced by Venkataramanan et al. [37], 

based on singular-value decomposition [37,42,50]. Tikhonov regularization was carried out 

with a smoothing parameter optimized by the Generalized Cross-Validation (GCV) method 

described by Golub et al. [58], which yielded similar smoothing coefficients for both bulk 

and spatially-resolved datasets.   

For each       spectrum, on-diagonal and cross-peak integral intensities were 

calculated by volumetric integration of the signal density within manually-selected 

rectangular regions-of-interest (ROIs) centred around each detected peak. To analyse 
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diffusive-exchange within the sample, the total intensity of cross peaks in each       

spectrum of regions I and II was normalized to its total integral area. The exchange kinetics 

were fitted by using the Levenberg-Marquardt algorithm with single-exponential functions 

[14,43] yielding an effective exchange time        , where the   
   correction to        

   

proposed by Washburn and Callaghan [43] proved negligible within the fitting error.  

 

3. Results and discussion 

 

3.1. Validation of the         measurements  

 

Figure 3 shows the results of the validation test of the         technique for 

phantom 1 consisting of the finely-sized α-Al2O3 particles with    300 μm, equivalent to 

those within region I of the phantom 2. Figure 3a shows the spatially unresolved       plot, 

whilst Figs. 3b and 3c both show the         results obtained, respectively, from a 1.42 

mm thick slice (region I) and from the whole sensitive region of the coil (~ 3.1 cm). For Fig. 

3c, the global       plot was reconstructed by processing the sum of all the individual 

        decays within the 3.1 cm region.  

 

Figure 3.        correlation plots for phantom 1 at mix = 8 ms, obtained from: (a)spatially 

unresolved       data; (b)         data corresponding to the position of region I in 

Fig. 1c; (c) the sum of all         data within the sensitive region of the coil (~3.1 cm). 

 

All three correlation maps in Fig. 3, where   
  represents the direct dimension and   

  the 

indirect one, respectively sampled during the   and   loops in Fig. 1, exhibit nearly identical 
1
H 

signal-density features and resolution of peaks.. The lack of artefacts due to the signal acquisition 

in the presence of read-out gradients fully validates the         methodology against the 

https://www.google.co.uk/search?client=firefox-b&q=Levenberg-Marquardt&spell=1&sa=X&ved=0ahUKEwjA65LtqLXTAhULKVAKHW18AZgQvwUIIigA
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bulk       experiment and also confirms the validity of the data processing of the spatially-

resolved data with 2D ILT.  

No cross-peaks are observed in Fig. 3 as a result of negligible diffusive exchange at 

such a short      value of 8 ms. The most intense population lies along the diagonal line with 

   = 5.8 ms, and three more on-diagonal peaks of progressively smaller intensity are 

observed at approximately 20 ms, 60 ms and 200 ms. The assignment of such populations is 

discussed in detail for the multi-layered phantom 2 in the forthcoming section. 

 

3.2. Spatially resolved        exchange  

 

Figure 4a shows a series of 1 mm thick two-dimensional   -slice images taken 

through phantom 2 at positions I, II, III and IV. The individual crushed particles in layers I, 

II and III are not discernible in the images as they are smaller than, or comparable to, the 

image resolution of 195 ×195 × 940 m; a number of air bubbles are also observed as black 

areas in the images. The differences in 
1
H signal intensity visible in the 

1
H 2D   -images is 

due to a number of factors: (i) significant    relaxation effects for intra particle liquid; (ii) 

variations in local porosity and (iii) background magnetic field susceptibility gradients; (iv) 

the addition of a repeated readout gradient will cause additional signal attenuation which may have to 

be taken into account in high resolution or long T2 systems. In the current implementation, the effect 

of the readout gradient is small and results in a reduction of the longest measured T2 (~500 ms) of less 

than 3% of its true value, and has a smaller effect on shorter T2 values.   

The first four vertical panels of Fig. 4 show the         results, respectively from 

regions I to IV, whilst the rightmost panel shows the corresponding spatially-unresolved 

(bulk)       data; along the horizontal rows, Figs. 4b-4e show the results obtained at 

      8, 60, 118 and 231 ms. We note that figs. 4b and 3a are from ostensibly similar 

samples and show good agreement, but that small differences may be expected to occur due 

to small differences in packing and particle size distributions.  The         plots at 

      8 ms (see Fig. 4b) show four on-diagonal populations labelled A, B C and D, whose 

   values and relative populations are summarized in Table 1. 

An important point to consider to facilitate the physical interpretation of peaks A, B 

and C in the         exchange plots in Figs. 4b-4e is the length scale of diffusional 

averaging.   The self-diffusion coefficient of cyclohexane, D, for phantom 2 was measured by 

PFG-NMR (data not shown) to be 0.6-0.9  10
-9

 m
2
/s. By taking into account the relaxation 

time values of population A,        5.8 ms, and of the bulk-like population D,        0.49 



  

12 
 

s, the molecular displacement ranges between                 1.9-2.3 µm to       

          17-20 µm [59].  This range of length scale defines the upper limit of the 

diffusion length above which structural heterogeneities experienced by the confined liquid 

are not averaged out during the NMR observation time-scale and therefore gives rise to multi-

exponential relaxation. Hence, the multi-site       spectra necessarily reflect structural 

and/or dynamic heterogeneities at spatial scales larger than a few microns, which is 

significantly larger than the intra-particle pore-size of the particles. We now discuss the 

assignment of peaks A, B, C and D.  

 

Figure 4.  For phantom 2, NMR data from left to the second rightmost column refer to 

regions with increasing particles sizes. In (a) 2D axial 
1
H NMR images are shown for each 

region of the sample. In (b), (c), (d) and (e),         relaxation-exchange maps acquired 

with      = 8, 60, 118 and 231 ms respectively, are shown. All 
1
H signal density scales are 

normalized to the maximum intensity in the second rightmost plot of (b). The rightmost panel 
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shows the 2D ILT results obtained for the sum of all time-domain data within the sensitive 

region of the coil (~ 3.1 cm): the signal density scale is normalised to that at     = 118 ms.   

 

Table 1    values (ms) for phantom 2 for on-diagonal peaks A, B, C and D, and 

corresponding signal populations (%), normalized to the total signal intensity for each 2D 

relaxation-exchange plot for       8 ms. The percentage measurement error on    is around 

5%. 
(*) 

The total percentage intensity is less than 100 due to the presence of small cross-peaks 

even at short     . 

    /ms [Relative population %] 

Packing region A B C D 

I 6.1 [92] 40 [5] 132 [3] - 

II
(*)

 7.1 [46] - 126 [17] 336 [34] 

III 7.1 [49] - 126 [14] 404 [37] 

IV 7.1 [38] - - 487 [62] 

 

Peak A for region I in Fig. 4b (      8 ms) is due to overlapping contributions from 

intra-particle cyclohexane and inter-particle cyclohexane diffusing in the smallest inter-

particle voids: both such environments are presumably largely influenced by background 

magnetic susceptibility field gradients on length scales smaller than   . Peaks B and C in 

region I (      8 ms) for Fig. 4b represent a small fraction of the total cyclohexane 

molecules, namely ~ 8%, that reside solely in inter-particle void spaces of the catalyst 

packing whose mean void sizes are considerably larger than the diffusive length scale of ~ 

1.4-1.7 µm. As a consequence, these liquid populations are both less motionally-hindered and 

less affected by background magnetic susceptibility gradients as compared to peak A, thus 

resulting in larger    values. The fact that two distinct peaks (B and C) are observed would 

normally indicate the presence of a distinct bi-modal inter-particle size space. However, this 

is physically unlikely given the adopted sample preparation method. Furthermore, because 

peaks B and C have poor SNR in region I, “pearling” artefacts typical of 2D ILT on the 

observed peak splitting cannot be excluded. This consideration is supported by the fact that 

peaks B and C tend to merge into a single broad feature in the         plots for regions 

II and III at       8 ms. The increase in the 
1
H signal integral intensity from region I to 

region III (see Table 1) reflects the increase in the average size of the inter-particle void 

space, and subsequent decrease in external particle surface area at lower packing densities. In 
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region IV, where small inter-particle voids are essentially absent, peak A results 

predominantly from intra-particle cyclohexane and Peak D arises from free cyclohexane that 

is uninfluenced by the alumina particles. We do note a small, but significant, population 

located near the diagonal at    100 ms, which is attributed to a minor amount of 

cyclohexane in direct contact with the surfaces of the large alumina rings in region IV. The 

decrease in the relative population of peak A, from ~ 92% in region I to ~ 38% in region IV, 

is predominantly attributed to the reduced density of intra-particle pores in region IV relative 

to region I and inter particle cyclohexane located within    of the particles. 

Upon increasing     , as shown in Figs. 4c-4e, multi-site cross-peaks are observed for 

all crushed particles (regions I-III) but are essentially absent in region IV. The appearance of 

cross-peaks is indicative of molecular exchange between two physically different 

environments with different    relaxation properties. In region I cross-peaks are visible only 

above the diagonal, yielding an asymmetric       signal density profile. The origin of asymmetry of 

the intensity of       cross peaks in three-site exchange systems with non-identical exchange times, 

and hence equilibrium populations, has been discussed by van Landeghem et al. [48] in terms of the 

mass balance rule being valid on the overall system, but not within each sub-set of two-site 

exchanging domains. This is the case of our system, where the spin population of peak A is much 

larger than that of peak B, resulting in a pronounced molecular exchange time asymmetry         

[14,48]. In addition, population A is more   -weighted (data not shown), resulting in BA cross-peak 

intensities, below the diagonal line, decaying more quickly than AB ones, above the diagonal line, as  

     increases. Indeed, we note that in region II, where (i) on-diagonal peaks are more evenly 

populated and (ii) population D, with least   -weighting effects, becomes larger, the cross-peaks are 

more symmetric. Other sources of asymmetry in our system might be due to the effects of Laplace 

inversion procedure on peaks with low SNR.  

In region III at     = 8 ms, peak A has a much-reduced population compared to 

region I, and additionally undergoes larger   -weighting as      increases from 8 ms to 231 

ms compared to the other on-diagonal intensities.  The cross-peak intensities are reduced 

relative to region I because the larger voids in region III result in a smaller solid surface area 

available for molecular exchange.   

The rightmost panel in Fig. 4 shows the         plots for the whole sample 

obtained by summing all the time-domain data over the homogeneous region of the coil (~ 

3.1 cm). Interestingly, as opposed to localised         plots in Fig. 4, in such bulk 

spectra cross-peaks are difficult to identify due to their low SNRs, and no substantial 

evolution with      is observed. This is due to the fact that, upon summing the decays from 
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all layers of particles, the overwhelming contribution to the       plots from mobile 

cyclohexane in regions III and IV completely masks the low-intensity cross-peaks 

characteristics of regions I and II. The comparison between bulk and localised         

spectra shows that, in such macroscopically heterogeneous system, the bulk       

technique cannot resolve low-intensity exchange cross-peaks, whilst such information is fully 

retained in localised         spectra, alongside spatial selectivity. In the following, the 

discussion and analysis of molecular exchange in regions I and II will be further analysed.   

Figures 5a and 5b illustrate, for particles in region I, the evolution vs.      of the 

normalized diagonal integral intensity of peak A, indicated as         , and of the normalized 

AB cross-peak integral intensity, indicated as         , where      is the total intensity of the 

        spectrum. Figures 5c and 5d report similar information for region II, where     

is replaced by the total intensity of all cross-peaks,    . A two-parameter single-exponential 

fitting based on the Levenberg-Marquardt least-square minimisation algorithm (black solid 

curves) was performed, in Figs. 5a and 5c, via the function 
   

     
      

       
       

    

       
    or, 

in Figs.5b and 5d, via the single-exponential recovery 
       

     
          

       
    

      
    

 
      
         [14,43]. 
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Figure 5 - The evolution of 
1
H signal intensity vs.      for: (a) normalized integral intensity 

of peak A, and (c) the normalized cross-peak intensity    .  (b) and (d) as for (a) and (c),  but 

for data from region II. In (d), the cross-peak intensity     refers to the sum of all the off-

diagonal peaks. 

 

For region I, data were fitted up to      of 0.3 s, and yielded identical “effective”, i.e. 

without   -correction [43], exchange times, namely        
            

    0.14 s. This confirms the 

substantial two-site nature of exchange in region I, as was expected considering the very low 

intensity of peak C and of its cross-peaks. Seven-parameter fitting of the non-normalized 

cross-peak intensity (     by using the matrix representation proposed by Dortch et al. [49], 

inclusive of both    and    relaxation, provided        
         

 

   
 

 

   
 
  

 = (0.16 ± 0.03) s, 

coincident within the error with the above estimate obtained by a more robust two-parameter 

fitting.  

Figures 5c and 5d show that, in region II and up to      values of about 1.2 s, single-

exponential decays with approximately similar exchange rates as in region I were obtained 

for both          and         . This shows that all individual pairs of exchanging liquid 
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domains in region II undergo molecular exchange with similar average rates, resulting in an 

overall single-exponential behaviour.   

Notably, fig. 5b shows that the amount of liquid exchanging between A and B sites in 

region I is very small, only about 4% of the total intensity, when compared to the larger 

liquid fraction of ~ 20%, in fig. 5d for peak A, in region II. If diffusive exchange with 

population A in crushed particles were dominated by the intra-particle liquid component in 

A, one would observe a decrease in the net amount of exchanged liquid from region I to 

region II, due to correspondingly lower density of particles. Instead, the increase by a factor 

of about 5 in the          and          values at equilibrium conditions, i.e. at longest      

values in Figs. 5b and 5d, is consistent with the scaling factor of about 3-5 in the average 

particle sizes, and hence mean inter-particle distances, when going from region I to region II. 

This latter result, in line with the fact that intra-particle exchange is likely to be completely 

averaged out at our diffusion length scales of      1.4-1.7 µm (see section 3.2), ultimately 

confirms the pure inter-particle character of the multi-site diffusive exchange under study.  

 

4. Conclusions 

 

In this work we have introduced a novel and efficient 
1
H NMR methodology, named 

       , for performing a spatially-resolved acquisition of       relaxation-exchange 

spectra based on the use of 1D frequency-encoding magnetic field gradients. A model system 

consisting of macroporous α-Al2O3 imbibed with cyclohexane was used and the spatially 

resolved data showed no artefacts due to the presence of frequency-encoding gradients, when 

compared with bulk       methods.   

The         technique was used to characterise the molecular exchange times of a 

liquid imbibed in porous media, and was demonstrated on a phantom comprising a multi-

layered packing of α-Al2O3 with particle sizes varying spatially from < 300 µm up to ~1 cm 

along the direction of the MRI resolution, containing both intra- and inter-particle 

cyclohexane. In such heterogeneous packing, the use of localised         measurements 

at varying mixing-time proved essential, not only for obtaining a spatially-resolved 

characterization of inter-particle liquid exchange, but also for revealing cross-peaks that 

could not observed at all in overall bulk       spectra. This result fully demonstrates the 

significant advantages of the new proposed method over conventional       measurements. 
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The proposed         method will likely be of use in characterising mass 

transport phenomena in a variety of different research environments including petrochemical, 

pharmaceutical and catalysis research. Here, a quantitative knowledge of multi-scale spatially 

dependent fluid mass transport processes that occur between the intra- and inter-particle pore 

space in laboratory scale experiments, will provide useful information when designing pilot 

scale operations.  
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Highlights: 

 

 

 Spatially-resolved relaxation-exchange correlation technique (       ) 

introduced. 

         method validated against bulk      . 

 Frequency-encoding MRI scheme enables same experimental duration as in      . 

 Local         spectra enable higher cross-peak resolution than       ones. 

         aids the study of local intra- and inter-particle mass transfer. 

 

 


