334 research outputs found

    Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non- Invasive Biomarker for Intestinal Inflammation

    Get PDF
    Inflammation has classically been defined histopathologically, especially by the presence of immune cell infiltrates. However, more recent studies suggest a role for low-grade inflammation in a variety of disorders ranging from metabolic syndrome to cancer, which is defined by modest elevations in pro-inflammatory gene expression. Consequently, there is a need for cost-effective, non-invasive biomarkers that, ideally, would have the sensitivity to detect low-grade inflammation and have a dynamic range broad enough to reflect classic robust intestinal inflammation. Herein, we report that, for assessment of intestinal inflammation, fecal lipocalin 2 (Lcn-2), measured by ELISA, serves this purpose. Specifically, using a well-characterized mouse model of DSS colitis, we observed that fecal Lcn-2 and intestinal expression of pro-inflammatory cytokines (IL-1b, CXCL1, TNFa) are modestly but significantly induced by very low concentrations of DSS (0.25 and 0.5%), and become markedly elevated at higher concentrations of DSS (1.0 and 4.0%). As expected, careful histopathologic analysis noted only modest immune infiltrates at low DSS concentration and robust colitis at higher DSS concentrations. In accordance, increased levels of the neutrophil product myeloperoxidase (MPO) was only detected in mice given 1.0 and 4.0% DSS. In addition, fecal Lcn-2 marks the severity of spontaneous colitis development in IL-10 deficient mice. Unlike histopathology, MPO, and q-RT-PCR, the assay of fecal Lcn-2 requires only a stool sample, permits measurement over time, and can detect inflammation as early as 1 day following DSS administration. Thus, assay of fecal Lcn-2 by ELISA can function as a non-invasive, sensitive, dynamic, stable and cost-effective means to monitor intestinal inflammation in mice

    Loss of function mutation in toll-like receptor-4 does not offer protection against obesity and insulin resistance induced by a diet high in trans fat in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptor-4 (TLR4) triggers inflammatory signaling in response to microbial lipoploysaccharide. It has been reported that loss of TLR4 protected against saturated fat-induced inflammation and insulin resistance. It is not known whether loss of TLR4 function offers protection against trans fat (TF) induced obesity, inflammation, and insulin resistance. We investigated whether mice with loss of function mutation in TLR4 were resistant to TF-induced pathologies such as obesity, inflammation, hyperglycemia, and hyperinsulinemia.</p> <p>Methods</p> <p>C57BL/6j and C57BL/10 mice were cross bred to generate TLR4 mutant and wild type (WT). TLR4 mutant (n = 12) and WT (n = 12) mice were fed either low fat (LF) (13.5% fat energy) or high TF diets (60% fat energy) for 12 weeks. <it>In vitro </it>experiments were conducted on mouse macrophage cells (RAW 264.7 and J774A.1) to investigate whether elaidic (trans 18:1) or oleic acid (cis 18:1) would upregulate inflammatory markers.</p> <p>Results</p> <p>TLR4 mutant mice were ~26.4% heavier than WT mice. In both genotypes, mice that received TF diet were significantly heavier than those mice that received LF diet (P < 0.01). TLR4 mutant mice compared to WT mice had significantly higher fasting blood glucose, serum insulin, insulin resistance, serum leptin, and serum cholesterol when they received TF diet (P < 0.05). No upregulation of iNOS or COX2 in response to either elaidic or oleic acid in macrophage cells was observed.</p> <p>Conclusions</p> <p>Loss of function mutation in TLR4 not only did not protect mice from TF-induced obesity, hyperglycemia, hyperinsulinemia, and hypercholesterolemia but also exacerbated the above pathologies suggesting that functional TLR4 is necessary in attenuating TF-induced deleterious effects. It is likely that TF induces pathologies through pathways independent of TLR4.</p

    Adaptive Immunity Induces Tolerance to Flagellin by Attenuating TLR5 and NLRC4-Mediated Innate Immune Responses

    Get PDF
    The host immune system is constantly exposed to diverse microbial ligands, including flagellin (FliC; a ligand for TLR5 and NLRC4) and lipopolysaccharide (LPS; a ligand for TLR4), which could induce immune tolerance to subsequent exposure. Herein, we investigated the extent to which FliC induces self-tolerance in vivo and the role of adaptive immunity in mediating such effect. Mice pre-treated with FliC displayed attenuated serum keratinocyte-derived chemokine (KC), interleukin (IL)-6 and IL-18 responses to secondary challenge of FliC. A negative correlation was observed between high anti-FliC titer and reduced KC, IL-6, and IL-18 responses upon FliC re-challenge in WT mice, but not Rag1KO mice, suggesting that adaptive immunity could tolerize TLR5 and NLRC4. However, administration of LPS during FliC pre-treatment impaired the generation of anti-FliC antibodies and resulted in a partial loss of self-tolerance to FliC re-challenge. These findings may be relevant in the context of bacterial infection, as we observed that anti-FliC response are protective against systemic infection by Salmonella typhimurium. Taken together, our study delineates a distinct co-operative and reciprocal interaction between the innate and adaptive arms of immunity in modulating their responses to a bacterial protein

    Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models

    Get PDF
    Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear

    Pathobiome driven gut inflammation in Pakistani children with environmental enteric dysfunction

    Get PDF
    Environmental Enteric Dysfunction (EED) is an acquired small intestinal inflammatory condition underlying high rates of stunting in children \u3c5 years of age in low- and middle-income countries. Children with EED are known to have repeated exposures to enteropathogens and environmental toxins that leads to malabsorptive syndrome. We aimed to characterize association of linear growth faltering with enteropathogen burden and subsequent changes in EED biomarkers. In a longitudinal birth cohort (n = 272), monthly anthropometric measurements (Length for Age Z score- LAZ) of asymptomatic children were obtained up to 18 months. Biological samples were collected at 6 and 9 months for the assessment of biomarkers. A customized TaqMan array card was used to target 40 enteropathogens in fecal samples. Linear regression was applied to study the effect of specific enteropathogen infection on change in linear growth (ΔLAZ). Presence of any pathogen in fecal sample correlated with serum flagellin IgA (6 mo, r = 0.19, p = 0.002), fecal Reg 1b (6 mo, r = 0.16, p = 0.01; 9mo, r = 0.16, p = 0.008) and serum Reg 1b (6 mo, r = 0.26, p\u3c0.0001; 9 mo, r = 0.15, p = 0.008). At 6 months, presence of Campylobacter [β (SE) 7751.2 (2608.5), p = 0.003] and ETEC LT [β (SE) 7089.2 (3015.04), p = 0.019] was associated with increase in MPO. Giardia was associated with increase in Reg1b [β (SE) 72.189 (26.394), p = 0.006] and antiflic IgA[β (SE) 0.054 (0.021), p = 0.0091]. Multiple enteropathogen infections in early life negatively correlated with ΔLAZ, and simultaneous changes in gut inflammatory and permeability markers. A combination vaccine targeting enteropathogens in early life could help in the prevention of future stuntin

    TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination

    Get PDF
    SummarySystems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5−/− mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination
    corecore