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SUMMARY

Systems biological analysis of immunity to the triva-
lent inactivated influenza vaccine (TIV) in humans re-
vealed a correlation between early expression of
TLR5 and the magnitude of the antibody response.
Vaccination of Trl5�/� mice resulted in reduced anti-
body titers and lower frequencies of plasma cells,
demonstrating a role for TLR5 in immunity to TIV.
This was due to a failure to sense host microbiota.
Thus, antibody responses in germ-free or antibi-
otic-treated mice were impaired, but restored by
oral reconstitution with a flagellated, but not aflagel-
lated, strain of E. coli. TLR5-mediated sensing of
flagellin promoted plasma cell differentiation directly
and by stimulating lymph node macrophages to pro-
duce plasma cell growth factors. Finally, TLR5-medi-
ated sensing of the microbiota also impacted anti-
body responses to the inactivated polio vaccine,
but not to adjuvanted vaccines or the live-attenuated
yellow fever vaccine. These results reveal an unap-
preciated role for gut microbiota in promoting immu-
nity to vaccination.

INTRODUCTION

Influenza affects millions of people worldwide, and despite it

being one of the most widely targeted viruses through yearly

vaccination programs, significant rates of morbidity and mor-

tality persist (CDC, 2013). One of two FDA-approved influenza

vaccines in the US is the TIV. Although the molecular pathways

involved in innate sensing of influenza virus and the ensuing

adaptive immune response have been studied (Allen et al.,

2009; Diebold et al., 2004; Ichinohe et al., 2009), immunolog-

ical mechanisms by which the inactivated vaccine elicits host

immune response remain unclear. TIV is a subunit vaccine

composed primarily of HA molecules derived from three

different strains of the influenza virus. It is unadjuvanted, yet

epidemiological data clearly show a level of effectiveness in

populations where vaccination is routinely administered (Kos-

tova et al., 2013). However, neither protection nor effective-

ness is complete and a significant proportion of vaccinees,

mostly among the young and elderly, remain susceptible to

infection. In addition to age, the status of pre-existing immune

memory significantly impacts vaccine effectiveness during a

given season (Sasaki et al., 2008). Furthermore, the molecular

mechanisms leading to protective immunity remain poorly

studied.

Recently we used a systems biology approach to study the

innate and adaptive response induced by vaccination of humans

with TIV (Nakaya et al., 2011). An intriguing insight to emerge

from this work was that the expression of toll-like receptor 5

(TLR5) within 3 days of vaccination strongly correlated to the

magnitude of the hemagglutination inhibition (HAI) titers 4 weeks

after vaccination. TLR5 is a cell-surface receptor specific for

flagellin (Hayashi et al., 2001), the monomeric component of

bacterial flagellum used for cell motility, and has not been asso-

ciated with viral infections. Thus, how TLR5 may be involved in

the induction of antibody responses to a viral vaccine is unclear.

In this study, we examined whether there was a causal link

between TLR5 and TIV-induced humoral immune response.

We show that vaccination of Tlr5�/� mice with TIV resulted in

strikingly reduced TIV-specific antibody response. Furthermore,

we demonstrated that TIV itself did not directly signal through

TLR5, but rather that the intestinal microbiota contributed to

TLR5-mediated enhancement of immunity to TIV and to the inac-

tivated polio vaccine, another subunit vaccine. These results

reveal an unappreciated role for the gut microbiota in modulating

vaccine immunity.
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RESULTS

TLR5 Expression Positively Correlates with Antibody
Responses to TIV in Humans
In a recent clinical study of influenza vaccination in healthy indi-

viduals (Nakaya et al., 2011), we identified key gene signatures at

early time points after vaccination correlating with themagnitude

of the later antibody response. Among these signatures, a strik-

ing correlation was observed between the induced level of TLR5

expression on day 3 after vaccination with the magnitude of HAI

titers measured at 28 days after vaccination (Figure S1A avail-

able online) and plasmablast responses on day 7 after vaccina-

tion. These correlations were evident across most vaccination

seasons (except 2010–2011) and suggest that the induction of

TLR5 upon vaccination was not specific for a cohort limited to

one particular season.

TLR5 is not known to be a sensor of viral stimuli, but rather of

bacterial flagellin. We, therefore, determined whether TIV was

capable of directly signaling through TLR5 by utilizing the hu-

man embryonic kidney cell line, HEK293, transfected with

TLR5 and nuclear factor kappa beta (NF-kB)-inducible reporter

gene encoding secreted human alkaline phosphatase (SEAP).

Stably transfected cells were cultured with either TIV, Flumist

(live-attenuated influenza vaccine), influenza virus (A/Bris-

bane/59/2007), or a panel of individual TLR agonists that in-

cludes flagellin, LPS, poly(I:C), and Resiquimod. As expected,

flagellin gave a robust activation signal that was evident within

3 hr of incubation with transfected cells. Although cells were

incubated further for 20 hr, other ligands including TIV and

influenza viruses failed to stimulate TLR5 (Figure 1A). These

results suggest that the correlation found between TLR5

expression and the subsequent antibody response cannot be

attributed to any type of contaminating source within the

vaccine.

Influenza-Specific Antibody Responses Induced
by Vaccination Is Dependent on TLR5 Expression
We tested whether TLR5 played a functional role in mediating

antibody response to TIV via Tlr5�/� mice. Upon vaccination,

TIV-specific immunoglobulin G (IgG) and IgM antibody re-

sponses were significantly reduced in Tlr5�/� mice in compar-

ison to responses in littermate wild-type mice (Figures 1B and

1C). The degree of reduction in TIV-specific antibody concen-

trations was more pronounced during the first 7 days after

vaccination than at later time points. Furthermore, TIV-specific

IgG1 and IgG2c antibody responses were both significantly

impacted by TLR5 deficiency (Figures 1D and 1E, respectively),

although the IgG2c antibody response remained considerably

impaired throughout the course of the primary immune

response. In contrast to vaccine-induced antibody responses,

baseline amounts of total IgG in the serum as well as the fre-

quencies of long-lived plasma cells in the bone marrow were

comparable between Tlr5�/� mice and wild-type littermate

mice (Figures S1B and S1C). Together, the data suggest that

although Tlr5�/� mice do not exhibit any gross defects or

pre-existing immunodeficiencies in the humoral immune

system under steady-state conditions, induction of antibody

responses following vaccination with TIV is substantially

reduced.

Early B Cell Response to Flu Vaccination Is Microbiota
Dependent
Given that TIV lacked the capacity to directly stimulate TLR5,

we hypothesized that an endogenous host-derived signal,

such as commensal bacteria residing in the gut, was activating

the TLR5 pathway. To test this possibility, we compared

vaccine-induced responses between germ-free and conven-

tionally housed specific-pathogen-free (SPF) B6 mice. Intrigu-

ingly, we found that vaccine-specific IgG concentrations were

significantly reduced in germ-free mice relative to the

response in SPF mice on day 7 postvaccination (Figure 2A).

This difference in vaccine-specific antibody levels was less

pronounced on day 28 (Figure 2B), which is consistent with

the kinetics of the antibody response observed in Tlr5�/�

mice (Figure 1B). These results suggest that microbiota is

crucial for the rapid induction of antibody responses following

TIV vaccination.

To determine the degree to which microbiota impacts vac-

cine-induced antibody responses, SPF mice were treated with

a cocktail of broad-spectrum antibiotics in the drinking water

(Hall et al., 2008; Ichinohe et al., 2011; Rakoff-Nahoum et al.,

2004). Following a regimen of 4 weeks of antibiotic treatment,

we found approximately 95% of fecal bacteria were eliminated

(Figure 2C). Thus, mice were vaccinated with TIV at 4 weeks

of treatment and the kinetics of antibodies induced was

compared to responses generated in untreated mice. We

observed substantial reduction in concentrations of TIV-specific

IgG at day 7 postvaccination that steadily increased to amounts

comparable in untreated mice by day 28 postvaccination (Fig-

ures 2A and 2D). These results demonstrate that antibiotic-

mediated depletion of microbiota also impairs vaccine-induced

antibody responses to TIV. Similar to Tlr5�/� mice, baseline

levels of total serum antibodies were not affected by antibiotic

treatment (Figure S1D) or germ-free conditions (Figure S1E),

which indicates absence of any gross defects in the immune

system. Although the majority of the microbiota was eliminated

from the gut following oral antibiotic treatment, we observed that

approximately 106 bacteria per milligram of stool were still

detectable in antibiotic-treated mice (Figure 2C), suggesting

that a complete elimination of microbiota is not necessary to

impact the capacity to which microbiota influences the immune

response to vaccination.

To further establish the role of microbiota following vaccina-

tion with TIV, we sought to examine whether allowing commen-

sals to naturally reconstitute a germ-free mouse would rescue

antibody responses to TIV. To address this question, germ-free

mice were conventionalized via transfer from a germ-free micro-

isolator into standard housing conditions. Intriguingly, TIV-spe-

cific IgG concentrations in these mice recovered to those

comparable in SPF mice (Figure 2E). Furthermore, a pairwise

analysis of bacteria numbers obtained from individual stool sam-

ples and TIV-specific antibody concentrations from correspond-

ing serum samples revealed a striking positive correlation

(Figure 2F) in untreated or antibiotic-treated mice, which is

consistent with the interpretation that the increased antibody

response observed in naturally reconstituted germ-free mice

was due to increased levels of bacteria. Together, these results

demonstrate that re-establishment of microbiota promotes anti-

body responses to TIV.
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Microbiota Impacts Short-Lived Plasma Cell Response
after TIV Vaccination
To investigate the cellular mechanisms underlying the impact of

microbiota particularly during the early phase of the humoral im-

mune response, we examined B cells in the draining lymph no-

des (dLNs) throughmultiple time points after vaccination in either

germ-free or antibiotic-treated mice. B cell ELISPOT assays

were conducted to measure the frequency of vaccine-specific

short-lived plasma cells. Consistent with the amount of TIV-spe-

cific antibodies detected in the serum, there was substantial

reduction in frequency of TIV-specific antibody-secreting cells

(ASCs) in the dLNs of germ-free, antibiotic-treated, and Tlr5�/�

A

B C

D E

Figure 1. TIV Induces Antibody Responses in a TLR5-Dependent Manner without Directly Signaling through TLR5

(A) SEAP concentrations in the supernatant of a TLR5-NF-kB reporter cell line cocultured with the indicated panel of TLR ligands and vaccines. Culture

supernatant was assayed for reporter activity at 20 hr of incubation. Data shown are mean O.D. values ± SEM and representative of two independent ex-

periments.

(B–E) TIV-specific IgG total (B), IgM (C), IgG1 (D), and IgG2c (E) concentrations in the serum of Tlr5�/� or littermate WT mice. The raw O.D. values shown were

obtained using serum (diluted by a factor of 1:200) from three independent experiments assayed concurrently in (B) and two independent experiments in

(C)–(E). Data are represented as the means ± SEM. Probability values of p < 0.05 were considered significant and are denoted by an asterisk (*). **p < 0.005;

***p < 0.0005.

See also Figure S1.
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mice 7 days after vaccination (Figures 3A, 3B, and S2A, respec-

tively). In germ-free mice, the reduction observed in ASC

response remarkably reflected the degree to which antigen-spe-

cific antibody concentrations in the serum were reduced as

compared to SPF mice. A similar trend was also evident in anti-

biotic-treated mice. Thus, the data suggest that a majority of

vaccine-induced IgG antibodies detected during the first

7 days after vaccination are produced by plasmablasts or

short-lived plasma cells in the dLN and that the microbiota was

critical for the induction of these cell types.

Furthermore, we characterized the maturation of the B cell

response by analyzing B cell subsets in the dLN by flow cytom-

etry. Gating on singlet CD45+ leukocytes, we found that indeed

plasmablasts or short-lived plasma cells—as defined by

GL7�CD138+ and intracellular IgG(H+L)+ phenotype—were pre-

sent at lower frequencies on day 7 postvaccination with TIV in

antibiotic-treated mice when compared to untreated mice (Fig-

ure 3C). Similar observations were made in germ-free mice

(data not shown). Intriguingly, in both germ-free and antibiotic-

treated mice, these cells did not accumulate significantly at later

A B

C D

E F

Figure 2. Host Microbiota Is Necessary for

Early Antibody Response to TIV

(A) TIV-specific IgG concentrations in serum of

Trl5�/�, antibiotic-treated, germ-free, or WT mice

on day 7 following vaccination. The raw O.D.

values shown were obtained using serum diluted

by a factor of 1:200. Data are representative of

three independent experiments and shown as

means ± SEM.

(B) Kinetics of TIV-specific IgG levels induced in

conventional or germ-free mice. The raw O.D.

values shown were obtained using serum diluted

by a factor of 1:200. Data are representative of

three independent experiments and shown as

means ± SEM.

(C) Bacteria in stool samples quantified by qPCR.

(D) Kinetics of TIV-specific IgG concentrations

induced in antibiotic-treated or untreated mice.

The raw O.D. values shown were obtained using

serum diluted by a factor of 1:200. Data are

representative of five independent experiments

and shown as means ± SEM.

(E) TIV-specific IgG concentrations on day 7 after

vaccination in Tlr5�/� mice, littermate WT, and

conventionalized germ-free mice. Serum samples

assayed at 1:200 dilution and shown as means ±

SEM.

Probability values of p < 0.05 were considered

significant and are denoted by an asterisk (*). **p <

0.005; ***p < 0.0005.

(F) Pair-wise analysis of baseline bacterial with

levels of TIV-specific IgG in corresponding mice at

day 7 after vaccination.

See also Figure S2.

time points, which suggests that the

increasing concentrations of antibodies

detected in the serum at day 14 and 28

postvaccination (Figures 2B and 2D) are

not due to a delayed onset of the plasma-

blast response in these mice. Together,

these results support a conclusion that microbiota significantly

impacts early induction of ASCs while germinal center B cells re-

sponses remain unaffected.

Impact of TLR5 Signaling and Microbiota on Recall
Response of Memory B Cells
In humans, TIV is administered seasonally. Thus, the majority of

vaccinees examined in the clinical studies described above (Na-

kaya et al., 2011) are likely to have immunity or immune reactivity

against flu antigens from either prior vaccinations or viral expo-

sure. To establish a corollary of the genetic signatures obtained

from vaccinated individuals (Figure S1A), we sought to evaluate

the role of TLR5 and microbiota on secondary immune

responses.

Prior to examining responses to a boost vaccination, however,

we found reduced concentrations of TIV-specific antibodies on

day 84 after prime vaccination in Tlr5�/� mice (Figure 3D). This

was an unexpected observation as comparable amounts of

TIV-specific IgG antibodies were detected at 28 days postvacci-

nation in Tlr5�/� and littermate wild-type mice. These results
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A B

C

D E F

G H I J

Figure 3. Impact of TLR5 Signaling and Microbiota in Primary and Secondary B Cell Responses

(A and B) Frequency of TIV-specific antibody-secreting cells (ASCs) in the draining LN of germ-free or SPF mice (A) and mice treated with a cocktail of broad-

spectrum antibiotics or left untreated (B). Representative spot formations are shown and total frequencies are expressed as themeans ± SEM in the graphs on the

right. Data are representative of three independent experiments.

(C) Relative frequencies of germinal center B cells (GL7+, CD138�, intracellular IgG [heavy and light chain]) and short-lived plasma cells (GL7�, CD138+, intra-
cellular IgG [heavy and light chain]+) gated from a population of CD11b�TCRb� cells (left and right graphs, respectively).

(D–F) Tlr5�/� and littermate WT mice were vaccinated with TIV and vaccine-specific serum IgG concentrations were measured at the indicated time points

following vaccination by serum ELISA. Shown are (E) preboost and (F) day 5 postboost serum concentrations of TIV-specific IgG. Raw O.D. values shown were

obtained using serum diluted by a factor of 1:3,600 and 1:400, respectively. Data are represented as means ± SEM.

(G andH) Frequency of TIV-specific ASCs in the LN (G) and levels of TIV-specific IgG (H) at day 5 after boost injection in antibiotic-treated or untreatedmice. Boost

dose of TIV was administered 50 days following prime immunization. Representative spot formations are shown on the left and ASC frequencies expressed as

means ± SEM in the graph. Raw O.D. values were obtained from serum assayed at a dilution of 1:3,200.

(legend continued on next page)
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suggest that the longevity of humoral immune response to a

prime vaccination wanes more rapidly in the absence of TLR5

signaling. Curtailed persistence of vaccine-induced antibody

concentrations may be due to impaired function or decreased

survival of long-lived plasma cells (LL-PCs) in the bone marrow.

Consistent with this hypothesis, we detected fewer antigen-spe-

cific ASCs in the bone marrow of germ-free mice than conven-

tionally housed mice, albeit at very low frequencies (Figure S2B).

Furthermore, we detected elevated expression of TLR5 in LL-

PCs (Figures S2C–S2E). Together, the data suggest that the

longevity of TIV-specific serum antibody titers is governed by

the microbiota and, in part, is due to defective long-lived plasma

cell response after vaccination.

To determine whether there is a similar effect in formation or

function of memory B cells, we administered a boost injection

into mice using the identical dose and route of the prime vacci-

nation. In contrast to the primary response, TIV-specific IgG an-

tibodies in Tlr5�/� mice were readily detectable at day 7 after

boost injection relative to preboost concentrations (Figures 3E

and 3F). However, the magnitude of the secondary antibody

response was substantially lower in Tlr5�/� mice than in litter-

mate wild-type mice (Figure 3F). These results suggest that

TLR5 signaling plays an important role in differentiation or func-

tion of memory B cells following vaccination with TIV.

To determine whether antigen-specific ASCs arising from

recall response of memory B cells are influenced by the micro-

biota, antibiotic-treated mice were also given a boost injection

as described above. We found fewer TIV-specific IgG+ ASCs

and lower serum IgG in antibiotic-treated mice at day 5 after

boost injection (Figures 3G and 3H). A pairwise analysis between

the corresponding serum ELISA and B cell ELISPOT samples re-

vealed a positive correlation between the frequency of ASCs and

the magnitude of TIV-specific IgG antibodies in the serum (Fig-

ure 3I). Additionally, we found fewer TIV-specific long-lived

plasma cells in the bone marrow (Figure 3J). Parenteral vaccina-

tion is not expected to affect responses in the bone marrow

within 5 days of injection; thus, these results are consistent

with our previous observation that fewer long-lived PCs are

induced in the absence of microbiota. These results suggest

that the magnitude of ASC induction following boost vaccination

with TIV is also critically dependent on the microbiota.

Multiple Classes of Bacteria Are Necessary to Mediate
Efficient Priming of B Cell Responses to TIV
Studies using gnotobiotic techniques have revealed a relation-

ship between a spectrum of different enteric microbial species

with the capacity to regulate the local immune system (Atarashi

et al., 2011, 2013; Ivanov et al., 2008; Mazmanian et al., 2005;

Naik et al., 2012). To begin understanding the complexity of mi-

crobial species underlying the phenotypes observed in antibi-

otic-treated mice, we sought to determine which bacteria are

responsible for the antibody response to TIV. To do so, we first

assessed changes occurring in bacterial communities following

antibiotic treatment by characterizing the microbiome and iden-

tified key compositional differences between untreated and anti-

biotic-treated mice. Using 454 sequencing, we identified several

layers of bacterial taxa groups that differed in relative abundance

between untreated and antibiotic-treated groups (Figures 4A–

4D). One of the striking differences uncovered was a significant

shift in major bacterial phyla. Two of the major phyla present in

the mouse microbiota are Bacteroidetes and Firmicutes (Fig-

ure 4A), and upon antibiotic treatment, we observed a marked

reduction in Firmicutes. Interestingly, although the amount of

Bacteroidetes increased after antibiotic treatment, the increase

was not proportional to the degree in which Firmicutes were

reduced. Instead, emergence of other taxonomic groups was

observed, most notable of which was Verrucomicrobia and

Proteobacteria.

To compare overall microbial community structure, un-

weighted UniFrac algorithm was applied and visualized using

principal coordinate analyses (Figure 4B). Within each of the

untreated and antibiotic-treated samples, there was minimal

variability in the composition of microbiota. Additionally, compo-

sitional differences clustered uniformly according to each of the

two types of samples. However, antibiotic treatment resulted in a

dramatic decrease in richness and diversity of the microbiota

(Figure 4C).

A ‘‘nearest-shrunken centroid classification’’ approach was

applied to allow the identification of operational taxonomic units

(OTUs) whose abundances significantly differed between each

category (untreated versus antibiotic-treated) with minimal

misclassification (Koren et al., 2011; Tibshirani et al., 2002). We

found several OTUs that were most abundantly represented in

each group (Figure 4D). Specifically, several OTUs belonging

to the Lachnospiraceae family of bacteria were well represented

in untreated mice but notably absent following antibiotic treat-

ment. In contrast, emergence of several Enterobacteriaceae

and Verrucomicrobiaceae OTUs were detected abundantly in

antibiotic-treated mice. Together, the data show that multiple

microbial communities are affected by antibiotic treatment and

that it remains unknown whether a causal relationship exists be-

tween one particular group of bacteria and regulation of immune

response to vaccination.

To further dissect the types of bacteria that might be associ-

ated with reduced humoral immune response after antibiotic

treatment, we administered a panel of different antibiotics and

selectively targeted different classes of bacteria. Mice were

treated 4–8 weeks with either vancomycin or polymixin B. Van-

comycin targets Gram-positive bacteria while polymixin B tar-

gets Gram-negative bacteria (Atarashi et al., 2011). Interestingly,

treatment with either antibiotic resulted in reduced serum con-

centrations of TIV-specific IgG (Figure 4E). These results are

consistent with multiple classes of bacterial species playing crit-

ical roles during vaccine-induced antibody responses.

Additionally, we examined whether gut-resident bacteria or

bacteria residing in other mucosal surfaces were necessary in

mediating the antibody response to TIV. Neomycin is an antibi-

otic that is poorly absorbed in the gastrointestinal tract, while

(I) Pairwise analysis was conducted using the levels of TIV-specific serum IgG antibodies measured by ELISA corresponding to the frequency of TIV-specific

ASCs in the dLN.

(J) Frequency of TIV-specific ASCs in the bone marrow on day 5 after boost injection.

Probability values of p < 0.05 were considered significant and are denoted by an asterisk (*). **p < 0.005; ***p < 0.0005. See also Figure S3.
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ampicillin has been shown to exhibit a higher degree of absorp-

tion and influence levels of bacteria at distal sites such as the

respiratory tract when delivered orally (Ichinohe et al., 2011).

Thus, we investigated the effects of targeting strictly gut-resi-

dent bacteria using neomycin and compared it to the effects

of using our cocktail of antibiotics. Intriguingly, neomycin treat-

ment alone was sufficient to recapitulate the effects observed

using the cocktail of antibiotics. Although only a modest reduc-

tion in concentration of TIV-specific IgG was observed in

neomycin-treated mice on day 7 after vaccination, a clear dif-

ference was evident on day 14 after vaccination (Figure 4F).

B cell ELISPOT assays in an independent experiment also

confirmed that early plasmablast responses in dLN of

neomycin-treated mice were comparably diminished to levels

observed in mice treated with the cocktail of antibiotics (data

not shown). These results suggest that targeting gut-resident

A B C

D

E F

Figure 4. Multiple Types of Bacteria Are Necessary to Mediate Antibody Response to TIV

(A–D) Composition of the microbiota in antibiotic-treated or untreated mice. Diversity and specific bacterial components of the host microbiota were assessed

using genomic bacterial DNA sequence analyses as described in the Experimental Procedures.

(A) Relative abundance of specific bacterial phyla present in the two mouse groups.

(B) Unweighted Unifrac principal coordinate analyses using the QIIME analysis software.

(C) Rarefaction curves for untreated or antibiotic-treated (ATB) groups generated based on the sequenced 16S rRNA gene libraries. Data are depicted as the

number of unique operational taxonomic units (OTUs).

(D) A ‘‘nearest-shrunken centroid’’ classification analyses identifying bacterial taxa groups highly represented in either of the two clustered groups. Data shown

are relative abundance of each OTU identified by this classification method represented in a heat map (white [least abundance] to red [most abundant]).

(E) TIV-specific IgG concentrations on day 7 after vaccination in mice untreated or treated with either vancomycin or polymixin B. Raw O.D. values shown were

obtained using serum diluted by a factor of 1:200.

(F) TIV-specific IgG concentrations in mice treated with antibiotics or with neomycin alone. RawO.D. values shown were obtained using serum diluted by a factor

of 1:200 and expressed as means ± SEM.

Probability values of p < 0.05 were considered significant and are denoted by an asterisk (*). **p < 0.005; ***p < 0.0005. See also Figure S4.
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bacteria alone is sufficient to impair the early antibody re-

sponses to vaccination.

To further demonstrate that the TLR5 signal originated from

microbiota in the gut, germ-free mice were inoculated with either

flagellated or aflagellated isogenic strains of E. coli (LF82WT and

LF82 FliCmut, respectively) (Figure S3A). Colonization of germ-

free mice with LF82 WT resulted in higher IgM and IgG antibody

responses to TIV than LF82 FliCmut (Figures S3B–S3D). Consis-

tently, oral gavage of LF82 WT in antibiotic-treated mice also re-

sulted in higher antibody responses than when using the aflagel-

lated counterpart (Figure S3E). Together, the data suggest that

bacterial flagellin originating from the gut sufficiently mediates

antibody response to TIV.

TLR5 Expression in Hematopoietic Population of Cells Is
Necessary for TIV-Induced Antibody Responses
To further investigate the cellular targets of TLR5 signaling dur-

ing the induction of antibody response to TIV, WT or Tlr5�/�mice

were irradiated and reconstituted with either WT or Tlr5�/�

donor bone marrow cells. Chimeric mice reconstituted with

TLR5-deficient donor cells (WT/KO) mounted significantly

lower antibody response to TIV than mice reconstituted with

WT donor cells (WT/WT) (Figure 5A). Consistent with our initial

observations inWT and Tlr5�/�mice (Figure 1B), chimeric Tlr5�/�

mice reconstituted with Tlr5�/� donor cells (KO/KO) exhibited

significantly lower antibody response to TIV than WT/WTmice

(Figure S4A). In contrast, WT mice reconstituted with Tlr5�/�

donor cells (KO/WT) mounted an antibody response compara-

ble to the KO/KOmice, which suggest that TLR5 expression in

a hematopoietic cell type is critical and its expression in nonhe-

matopoietic cells is insufficient to mediate antibody responses

to TIV. Interestingly, the reciprocal chimerism (WT/KO) re-

sulted in antibody responses similar to the WT/WT mice,

which indicates that TLR5 expression in hematopoietic cell

types is sufficient to mediate vaccine-induced antibody

response to TIV. Thus, TLR5 expression in nonhematopoietic

cells is likely dispensable. Consistent with these results,

we found similar levels of TIV-specific antibodies induced in

VillinCreMyd88loxp mice, which specifically lack the expression

of MyD88 in epithelial cells lining the intestinal tract (Figure S4B).

Together, the data suggest a critical role of TLR5 in hematopoi-

etic cells.

TLR5-Mediated Signaling Pathway Does Not Require
Dendritic Cells
The cellular distribution of TLR5 expression has previously

been characterized, although its functional expression remains

unclear (Carvalho et al., 2012; Gewirtz et al., 2001; Gururajan

et al., 2007; Letran et al., 2011). The distribution of TLR5

expression can range from cells of the innate immune system

such as dendritic cells (DCs) and macrophages to nonhemato-

poietic cells such as gut epithelial cells. Given the above find-

ings that TLR5 appears to play a critical role in hematopoietic

cells, we hypothesized that it serves important functions in

dendritic cells following vaccination. To test this possibility,

we utilized mice that selectively lack MyD88 expression in

DCs. Targeting MyD88 was ideal in lieu of TLR5 floxed

strains, because the alternative receptor for flagellin, NLRC4,

was not necessary to mediate TIV-induced antibody re-

sponses (Figure S4C). However, vaccination of Cd11cCreMy-

d88loxp mice resulted in only marginally reduced antibody re-

sponses to littermate control mice (Figure S5A). Consistently,

activation of DCs in the dLN examined 3 to 18 hr after injec-

tion with TIV did and measured by upregulation, CD86 and

MHC class II molecules was normal (Figures S5B and S5C).

Moreover, coincubation of splenocytes directly with TIV

in vitro did not result in CD86 and CD80 upregulation (Fig-

ure S5D). Together the data suggest that the TLR5-MyD88

pathway is not critical in DCs during humoral immune

responses to TIV. In fact, DT-mediated depletion of DC popu-

lations in zDC-DTR bone marrow chimeric mice (Figure S5E)

demonstrated that DCs were dispensable during antibody re-

sponses to TIV (Figure S5F).

Flagellin Enhances the Generation of SL-PCs In Vivo via
Direct TLR5 Stimulation on Activated B Cells
To further investigate the direct cellular targets of TLR5

signaling, we examined the effects of exogenously providing

the TLR5 signal in vivo. Coinjection of flagellin and TIV in antibi-

otic-treated mice fully rescued the TIV-specific antibody

response within 7 days of vaccination, which is comparable

to that in untreated mice (Figure 5B). These results suggest

that the reduced antibody response in antibiotic-treated mice

is not due to an inherent defect in the immune system, but

rather to the absence of commensal-derived flagellin. Based

on these observations, we further hypothesized that flagellin

enhances short-lived plasma cell responses to TIV. Administra-

tion of TIV with flagellin resulted in higher frequencies of

CD138+ B cells with a greater proportion of these B cells pro-

ducing isotype-switched IgG antibodies (Figures 5C–5E). Spe-

cifically, flagellin enhanced the presence of CD138+B220lo

short-lived plasma cells (SL-PCs), whereas CD138+B220+ plas-

mablasts remained unaffected (Figure 5F). Together, the data

suggest that flagellin enhances early antibody responses by

promoting the differentiation or survival of activated B cells

into SL-PCs.

Therefore, we next explored the possibility that flagellin

signaled through TLR5 on B cells and hypothesized that

TLR5 signaling directly enhanced the differentiation of or anti-

body production in SL-PCs. Although previous studies by us

and other groups have shown that naive B cells lack TLR5

expression (Dorner et al., 2009; Gururajan et al., 2007), whether

TLR5 is expressed in activated B cells following antigen

encounter remains unknown. To address this question, purified

plasmablasts and SL-PCs (IgM�IgD�CD138+B220+/lo) from the

dLNs of vaccinated mice were analyzed by qRT-PCR. Signifi-

cant upregulation of TLR5 expression was observed in these

cells as compared to naive B cells (Figure 5G). Consistently,

we also found that polyclonal activation of purified splenic B

cells in vitro resulted in progressive upregulation TLR5 expres-

sion in culture (Figure 5H). TLR5 expression observed in

plasma cells is consistent with prior findings in gut B cells

and marginal zone B cells (He et al., 2007, 2010). Intriguingly,

stimulated B cells in the presence of flagellin in vitro resulted

in enhanced generation of plasma cells and secretion of Ig (Fig-

ures 5I–5L). These results are consistent with previous reports

on the effects of flagellin in promoting Th2 cell responses via

MyD88-dependent mechanisms (Didierlaurent et al., 2004;
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Figure 5. Cellular Targets of TLR5 Activation after TIV Vaccination

(A) TIV-specific IgG antibody response in WT or Tlr5�/� bone marrow chimeric mice. Raw O.D. values were obtained using serum diluted at 1:100 and expressed

as means ± SEM.

(legend continued on next page)
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Sirard et al., 2009). Together, the data suggest that flagellin

directly acts on activated B cells and promotes plasma cell

responses.

Macrophages Play Critical Roles in Mediating the
Antibody Response to TIV
Although we observed direct effects of flagellin on B cells, vacci-

nation of Cd19CreMyd88loxp mice resulted in only a modest

decrease in magnitude of the antibody response (Figure S5H).

This partial phenotype led us to speculate that flagellin may

engage multiple cellular pathways and therefore we explored

whether MyD88 signaling in other cell types were crucial. We

have shown data that suggest DCs are not critical in mediating

the antibody response to TIV. However, we also have evidence

that TIV-specific IgG response is T cell dependent, because

vaccination of Tcra�/� mice did not yield detectable vaccine-

specific IgG (Figure S5G). Therefore, we reasoned that there

must be an antigen-presenting cell other than DCs promoting

the humoral immune response to TIV. We hypothesized that

macrophages served important APC functions toward stimu-

lating B cell responses and targeted these cells for depletion us-

ing clodrosome (clodronate-liposomes). Indeed, macrophage-

depleted mice failed to mount any detectable vaccine-specific

IgGantibody responsebyday 7 following vaccination (Figure 6A).

Furthermore, we found that macrophages expressedmore TLR5

relative to naive B cells (Figure S6A) and so we subsequently

tested whether the TLR5-MyD88 signaling pathway played a

critical role in macrophages. Vaccination of LysMCreMyd88loxp

mice resulted in significantly reduced antibody responses to

TIV relative to littermate control mice (Figure 6B). Consistently,

we found that macrophages in the dLN were activated by

flagellin in vivo. Specifically, cells phenotypically consistent

with medullary cord macrophages in the LN (CD169�F4/80+ of

CD11b+CD11c� gated cells) (Gray and Cyster, 2012) were found

to express higher amounts of CD86 (Figure 6C) and produce

significant quantities of tumor necrosis factor-a (TNFa), inter-

leukin-6 (IL-6), and a proliferation-inducing ligand (APRIL) (Fig-

ures S6B–S6E) in a TLR5-dependent manner. Moreover, we

found that flagellin directly activated macrophages via TLR5

in vitro (Figure 6D) asmarked by upregulation of CD86 (Figure 6E)

and enhanced the production of IL-6 (Figure 6F). Together, our

results suggest that in addition to the direct effect flagellin on

plasma cells, TLR5 signaling on macrophages are critical for

antibody production.

Antibody Responses to Adjuvanted or Live-Attenuated
Vaccines Are TLR5 and Microbiota Independent
As highlighted above, TIV is an unadjuvanted vaccine. In addi-

tion, we demonstrated that coinjection of flagellin with TIV

restored antibody responses in antibiotic-treated mice (Fig-

ure 5B). Together, it raised the possibility that adjuvanted or

live-attenuated vaccines may not rely onmicrobiota-derived sig-

nals to promote the antibody response. To address this ques-

tion, we evaluated immune responses to several types of

vaccines. When purified HIVenv protein adsorbed in alum were

injected into antibiotic-treated or untreated mice, comparable

amounts of antigen-specific IgG responses were observed (Fig-

ure 7A). Similarly, antibiotic treatment did not affect antibody

responses to the FDA-approved Tdap vaccine (tetanus-diph-

theria-pertussis), which consists of purified toxoids also ad-

sorbed in alum. Additionally, vaccination using the live-attenu-

ated yellow fever vaccine (YF-17D) failed to exhibit differences

in magnitudes of antibody responses between untreated and

antibiotic-treated mice. Consistently, YF-17D and Recombivax

HB (alum-adsorbed recombinant hepatitis B antigens) vaccines

induced comparable amounts of antigen-specific IgG responses

in Trl5�/� and littermate WT mice (Figure 7B). Together, the data

suggest that adjuvanted vaccines are not dependent on micro-

biota-derived TLR5 signals to mediate the antibody response.

However, whether the dependence on microbiota was

specific for TIV-induced antibody responses or a mechanism

required by other unadjuvanted protein vaccines remained un-

known. To this end, we evaluated immune responses to the polio

vaccine, IPOL. The polio vaccine is similar to TIV in regards to be-

ing an inactivated, purified viral subunit vaccine. Vaccination of

Tlr5�/� with IPOL resulted in significantly reduced IgG antibody

response similar to the effects on immunity to TIV (Figure 7B).

These results reveal an important role for microbiota in control-

ling vaccine immunity (Figure S7), particularly on immunity

induced by subunit vaccines containing weak or no adjuvants.

DISCUSSION

Emerging evidence indicates diverse roles for the microbiota in

influencing host health, the most notable of which involves

development and homeostasis of the immune system (Atarashi

et al., 2011, 2013; Hall et al., 2008; Ivanov et al., 2008; Mazma-

nian et al., 2005; Rakoff-Nahoum et al., 2004). Recent reports

indicate that immunity to infections can be impacted by the

(B) TIV-specific IgG concentrations in antibiotic-treated or untreatedmice vaccinatedwith TIV alone ormixedwith flagellin (day 7). RawO.D. valueswere obtained

using serum diluted at 1:100 and expressed as means ± SEM. Data are representative of three independent experiments.

(C–F) WT mice were vaccinated with TIV alone or mixed with flagellin. dLNs were examined on day 7 after vaccination.

(C) Dot plots shown represent a population of CD45+TCRb� gated cells (top) and concentrations of intracellular IgG in CD138+ B cells (bottom).

(D) Levels of intracellular IgG in CD138+ B cells are represented as the mean fluorescence intensity values.

(E) Relative frequencies of IgG-producing CD138+ B cells.

(F) Relative frequencies of plasmablasts (CD138+B220+) and short-lived PCs (CD138+B220lo) as depicted in (C), top.

(G) TLR5 expression in naive B cells and plasmablast/short-lived PCs (Pb/SL-PCs) analyzed by qRT-PCR. Data represent mean TLR5 mRNA (normalized to

GAPDH) in arbitrary units ± SEM. Data shown are one of three independently sorted B cell samples assayed in triplicate.

(H) TLR5 expression in in vitro stimulated B cells analyzed as in (G). Data shown are representative of two independent experiments.

(I–L) In vitro stimulated B cells in the presence of flagellin or LPS after 6 days in culture. Data shown are representative of two independent experiments.

(I) Representative dot plots depicting gating and relative frequencies of CD138+ B cells.

(J) Relative frequencies of CD138+ B cells (plasmablast/SL-PC).

(K and L) Amount of secreted IgG (K) and IgM (L) in culture supernatant samples assayed by ELISA at a dilution of 1:400. Data are expressed as themeans ± SEM.

Probability values of p < 0.05 were considered significant and are denoted by an asterisk (*). **p < 0.005; ***p < 0.0005. See also Figure S5.
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Figure 6. Flagellin Activates Multiple Subsets of Macrophages in the LN and Induces IL-6 Production in Macrophages via TLR5

(A) TIV-specific serum IgG levels at day 7 after vaccination in WT mice pretreated with clodrosome or encapsome. Data shown are representative of two in-

dependent experiments and are expressed as the means ± SEM.

(legend continued on next page)
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microbiota (Abt et al., 2012; Ichinohe et al., 2011; Naik et al.,

2012). Data from our current study suggest an unappreciated

role for the intestinal microbiota in enhancing vaccine immunity.

Using both germ-free mice and antibiotics, we demonstrated

that the microbiota was critical for the induction of short-lived

PC responses as well as long-lived PCs in the bone marrow

following vaccinationwith TIV. Furthermore, the recall of memory

B cells was impaired.

In addition, our data suggest that there may be a requirement

of multiple types of microbial communities, rather than specific

bacterial species. Use of antibiotics, such as vancomycin or pol-

ymixin B, to target Gram-positive and Gram-negative bacteria

revealed that both types of bacteria play important roles in medi-

ating immune responses against TIV. Therefore, multiple groups

or communities of bacteria may be required to support humoral

immunity.

A surprising aspect of our studies is the far-reaching effect of

intestinal bacteria on immunity to parenteral vaccines. Our

studies in mice utilized both i.m. and subcutaneous (s.c.) injec-

tions of TIV and IPOL, and we found that vaccine-induced

short-lived PC responses were restricted to the locally draining

LN (unpublished data). In contrast, a recent study demonstrated

that immune responses in skin-draining lymph nodes were influ-

enced by commensal flora of the skin and not by gut-resident

microbiota (Naik et al., 2012). However, other studies have

shown that depletion of gut microbiota can enhance host sus-

ceptibility to viral infections systemically (Abt et al., 2012) and

in the lung (Ichinohe et al., 2011). Hence, capacity of the

A

B

Figure 7. Level of Impact Microbiota Invokes on Antibody Responses Is Vaccine Specific

(A) Magnitude of vaccine-specific IgG responses in antibiotic-treated or untreatedmice. RawO.D. values shownwere obtained using serum diluted by a factor of

1:100. Data are expressed as the means ± SEM. Data shown are representative of two independent experiments.

(B) Levels of vaccine-specific serum IgG in Tlr5�/� or littermate WT mice. Serum samples diluted by 1:50 were assayed on day 7 (TIV, IPOL) and day 14

(Recombivax HB, YF-17D) after vaccination. Data shown are representative of two independent experiments. Probability values of p < 0.05 were considered

significant and are denoted by an asterisk (*). **p < 0.005; ***p < 0.0005.

(B) TIV-specific serum IgG1 levels in LysMCre+MyD88loxp or Cre�MyD88loxp mice at day 7 after vaccination. Two independent experiments are shown. Raw O.D.

values were obtained using serum diluted by a factor of 1:100.

(C) Levels of CD86 expression on macrophage subsets in the dLN of mice after flagellin injection. The three major macrophage subsets in the LN were examined

based on expression profiles of the following surface markers: CD169+F4/80� (SSM), CD169+F4/80+ (MSM), CD169�F4/80+ (MCM) within CD11c�Ly6C� gated

population of cells. Shown are representative histograms of surface CD86 levels (top) and the kinetics of CD86 MFI values shown as the means ± SEM (bottom).

(D–F) Flow-sorted macrophages were stimulated in vitro with flagellin for 24 hr.

(D) Representative dot plot depicts purity of macrophage isolation expressed in percent of gated cells.

(E) Relative frequencies of CD86+ cells or MFI values of CD86 expression.

(F) Levels of IL-6 in culture supernatants expressed as means ± SEM. Data shown are representative of three independent experiments.

Probability values of p < 0.05 were considered significant and are denoted by an asterisk (*). **p < 0.005; ***p < 0.0005. See also Figure S6.
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microbiota to influence immunity may be more pervasive than

previously appreciated.

We further demonstrated that TLR5 deficiency or antibiotic

treatment did not affect alum-adjuvanted or live-attenuated vac-

cines, while unadjuvanted vaccines such as TIV and IPOL

induced antibody responses through TLR5 and microbiota-

dependent mechanisms. However, these results are in contrast

to previous reports that show antibiotic treatment diminishes

adaptive immune responses to LCMV (Abt et al., 2012) and live

influenza viruses (Ichinohe et al., 2011), because live viral patho-

gens can be expected to signal via multiple innate pathways

much like vaccine adjuvants. This apparent discrepancy can

be explained, in part, by differences in the route of infection

versus immunization utilized in these studies. Furthermore,

mechanisms underlying immune responses elicited by vaccine

adjuvants may be distinct from pathways affected during an

infection by pathogenic agents.

The stimulatory capacity of flagellin to induce both humoral and

cellular immune responses has been well characterized (Didier-

laurent et al., 2004; McSorley et al., 2002). How flagellin in the

gut is influencing B cell response in the periphery remains less

clear, but some evidence suggests that direct translocation

must occur and that flagellin itself or other downstream signaling

pathways following its translocation must be engaged not in the

gut-associated tissues but rather at the site of B cell priming

following vaccination. The first line of evidence supporting this

hypothesis is that the expression of TLR5 has been shown on

the basolateral surfaces of gut epithelial cells rather than the

lumen-facing apical cell surface (Abreu, 2010; Gewirtz et al.,

2001). Moreover, signaling via TLR5 in gut-associated tissues

may not be necessary or sufficient to mediate the antibody

response, because gut-epithelial specific deletion of MyD88 did

not affect antibody responses following vaccination. Furthermore,

vaccine-specific antibody-secreting cells were detected only in

dLNs and not in gut-associated tissues such as the mesenteric

LNs,Peyer’spatch,or small and large intestinal laminapropria (un-

published data). These observations suggest that vaccine-spe-

cific B cells were not being primed or migrating to sites that might

bemore proximal to the source of flagellin. Therefore, B cells likely

donot come in contactwith flagellin that immediately translocated

across the intestinal epithelium. Instead, flagellin or other second-

ary signals likely influence responses in the peripheral LNs.

Although we failed to observe a requirement of MyD88

signaling in DCs during antibody responses to TIV, we detected

rapid upregulation of TLR5 in activated B cells and enhanced

plasma cell responses to flagellin in vivo and in vitro. Previous

studies have shown that TLR signaling on B cells is important

for mediating antibody responses to certain adjuvanted vaccines

(Kasturi et al., 2011; Pasare and Medzhitov, 2005). Consistently,

our data support the notion that flagellin acts directly on acti-

vated B cells. However, B-cell-specific deletion of MyD88 re-

sulted in only modest reduction of TIV-specific antibodies.

Thus, we reasoned that there are likely redundant cellular path-

ways for flagellin and evaluated whether other APCs functioned

in TLR5-dependent manner. We showed that macrophages are

indeed critical mediators of antibody response to TIV. Although

contradictory evidence exists in the literature regarding TLR5

functionality in macrophages, we detected TLR5 expression in

macrophage cells in the LN.

A major implication of our findings for global public health is

the possibility that the microbiota plays a role in immune re-

sponses to vaccines. The status of the host microbiota may be

a critical determinant of vaccine efficacy and alteration of micro-

biota through antibiotic exposure could negatively impact vac-

cine efficacy. Furthermore, vaccines are less effective in many

parts of developing countries compared to industrialized areas,

and this may in part be due to multiple factors affecting the mi-

crobiota (Pulendran and Ahmed, 2011). Our results predict that

diet, nutrition, metabolic diseases, pre-existing gut-associated

pathologies, and other compounding factors affecting themicro-

biota may in turn affect the capacity of current and future vac-

cines to establish immunity.

Finally, these results highlight the value of using systems ap-

proaches not only to identify molecular signatures of vaccine effi-

cacy, but also to delineate criticalmechanistic insights about host

immunity to vaccination (Nakaya et al., 2011; Querec et al., 2009).

EXPERIMENTAL PROCEDURES

Mice and Immunizations

C57BL/6 (Charles River Laboratory, Jackson Laboratory), Tlr5�/�, and litter-

mate wild-type mice were bred and housed at Emory University and Georgia

State University (Vijay-Kumar et al., 2010a, 2010b) and immunized as indicated

in Supplemental Information.

Antibiotic Treatment

Mice were treated with a cocktail of broad-spectrum antibiotics (neomycin, 1

g/l; ampicillin, 1 g/l; vancomycin, 0.5 g/l; metronidazole, 1 g/l) (Sigma Aldrich)

dissolved in drinkingwater for 4 weeks prior to immunizations (Rakoff-Nahoum

et al., 2004). Polymixin B Sulfate (USBCorporation) was administered at a con-

centration of 0.1 g/l.

In Vitro Stimulation of B Cells

B cells were purified from wild-type spleen using anti-mouse CD19-coated

microbeads (Miltenyi). Cells were cultured at 37�C in culture medium contain-

ing a cocktail of the following reagents at the indicated final concentrations:

rat anti-mouse IgM (2 mg/ml, Southern Biotech), recombinant mouse IL-4

(R&D, 10 ng/ml), recombinant mouse IL-5 (R&D, 10 ng/ml), recombinant

mouse CD40L (R&D, 100 ng/ml), and recombinant mouse IFN-g (R&D,

5 ng/ml). Cultured cells were isolated by centrifugation using Histopaque-

1077 (Sigma Aldrich).

Macrophage Depletion

Macrophageswere depleted using clodronate-liposome (Clodrosome) or con-

trol-liposome (Encapsome) reagents purchased from Encapsula NanoScien-

ces. C57BL/6 mice were injected intravenously on days �2 and �1 prior to

vaccination.

In Vitro Stimulation of Macrophages

Macrophages were purified from collagenase-digested spleens of naiveWT or

Tlr5�/� mice using a flow-sorter based on TCRb�CD19�CD11b�F4/80+

expression profile. Macrophages were stimulated in vitro with flagellin for 20

to 24 hr at 37�C.
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Transient inability to manage proteobacteria promotes chronic gut inflamma-

tion in TLR5-deficient mice. Cell Host Microbe 12, 139–152.

CDC (2013). Prevention and control of seasonal influenza with vaccines: rec-

ommendations of the advisory committee on immunization practices –

United States, 2013-14. MMWR 62 (RR07), 1–43.

Didierlaurent, A., Ferrero, I., Otten, L.A., Dubois, B., Reinhardt, M., Carlsen, H.,

Blomhoff, R., Akira, S., Kraehenbuhl, J.P., and Sirard, J.C. (2004). Flagellin pro-

motes myeloid differentiation factor 88-dependent development of Th2-type

response. J. Immunol. 172, 6922–6930.

Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004).

Innate antiviral responses by means of TLR7-mediated recognition of single-

stranded RNA. Science 303, 1529–1531.

Dorner, M., Brandt, S., Tinguely, M., Zucol, F., Bourquin, J.P., Zauner, L.,

Berger, C., Bernasconi, M., Speck, R.F., and Nadal, D. (2009). Plasma cell

toll-like receptor (TLR) expression differs from that of B cells, and plasma

cell TLR triggering enhances immunoglobulin production. Immunology 128,

573–579.

Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. (2001).

Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to

induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–

1885.

Gray, E.E., and Cyster, J.G. (2012). Lymph node macrophages. J. Innate

Immun. 4, 424–436.

Gururajan, M., Jacob, J., and Pulendran, B. (2007). Toll-like receptor expres-

sion and responsiveness of distinct murine splenic and mucosal B-cell sub-

sets. PLoS ONE 2, e863.

Hall, J.A., Bouladoux, N., Sun, C.M.,Wohlfert, E.A., Blank, R.B., Zhu, Q., Grigg,

M.E., Berzofsky, J.A., and Belkaid, Y. (2008). Commensal DNA limits regulato-

ry T cell conversion and is a natural adjuvant of intestinal immune responses.

Immunity 29, 637–649.

Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng,

J.K., Akira, S., Underhill, D.M., and Aderem, A. (2001). The innate immune

response to bacterial flagellin is mediated by Toll-like receptor 5. Nature

410, 1099–1103.

He, B., Xu, W., Santini, P.A., Polydorides, A.D., Chiu, A., Estrella, J., Shan, M.,

Chadburn, A., Villanacci, V., Plebani, A., et al. (2007). Intestinal bacteria trigger

T cell-independent immunoglobulin A(2) class switching by inducing epithelial-

cell secretion of the cytokine APRIL. Immunity 26, 812–826.

He, B., Santamaria, R., Xu,W., Cols, M., Chen, K., Puga, I., Shan, M., Xiong, H.,

Bussel, J.B., Chiu, A., et al. (2010). The transmembrane activator TACI triggers

immunoglobulin class switching by activating B cells through the adaptor

MyD88. Nat. Immunol. 11, 836–845.

Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R., and Iwasaki, A. (2009).

Inflammasome recognition of influenza virus is essential for adaptive immune

responses. J. Exp. Med. 206, 79–87.

Ichinohe, T., Pang, I.K., Kumamoto, Y., Peaper, D.R., Ho, J.H., Murray, T.S.,

and Iwasaki, A. (2011). Microbiota regulates immune defense against respira-

tory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108, 5354–

5359.

Ivanov, I.I., Frutos, Rde.L., Manel, N., Yoshinaga, K., Rifkin, D.B., Sartor, R.B.,

Finlay, B.B., and Littman, D.R. (2008). Specific microbiota direct the differen-

tiation of IL-17-producing T-helper cells in the mucosa of the small intestine.

Cell Host Microbe 4, 337–349.

Kasturi, S.P., Skountzou, I., Albrecht, R.A., Koutsonanos, D., Hua, T., Nakaya,

H.I., Ravindran, R., Stewart, S., Alam, M., Kwissa, M., et al. (2011).

Programming the magnitude and persistence of antibody responses with

innate immunity. Nature 470, 543–547.
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