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The host immune system is constantly exposed to diverse microbial ligands, including

flagellin (FliC; a ligand for TLR5 and NLRC4) and lipopolysaccharide (LPS; a ligand

for TLR4), which could induce immune tolerance to subsequent exposure. Herein, we

investigated the extent to which FliC induces self-tolerance in vivo and the role of adaptive

immunity in mediating such effect. Mice pre-treated with FliC displayed attenuated serum

keratinocyte-derived chemokine (KC), interleukin (IL)-6 and IL-18 responses to secondary

challenge of FliC. A negative correlation was observed between high anti-FliC titer and

reduced KC, IL-6, and IL-18 responses upon FliC re-challenge in WT mice, but not

Rag1KO mice, suggesting that adaptive immunity could tolerize TLR5 and NLRC4.

However, administration of LPS during FliC pre-treatment impaired the generation of

anti-FliC antibodies and resulted in a partial loss of self-tolerance to FliC re-challenge.

These findings may be relevant in the context of bacterial infection, as we observed that

anti-FliC response are protective against systemic infection by Salmonella typhimurium.

Taken together, our study delineates a distinct co-operative and reciprocal interaction

between the innate and adaptive arms of immunity in modulating their responses to a

bacterial protein.
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INTRODUCTION

The microbial biomass in the intestine is enriched with diverse microbial-associated molecular
patterns (MAMPs) that are recognizable by host pathogen recognition receptors (PRRs). Upon
activation, PRRs such as Toll-like receptors (TLR) initiate rapid secretion of cytokines and
chemokines to recruit immune cells to the site of microbial transgression. To deter unwarranted
inflammatory responses, the host has evolved built-in mechanisms to promote immunotolerance
against repeated exposure to MAMPs (Rakoff-Nahoum et al., 2004). These mechanisms include
strategic expression of PRRs (e.g., TLR5) on the basolateral side of the epithelia (Gewirtz et al.,
2001a), downregulation of surface PRRs (e.g., TLR2, TLR4, MD-2, TLR5) (Medvedev et al., 2000;
Abreu et al., 2001; Otte et al., 2004), and secretion of endogenous inhibitors [e.g., soluble CD14,
secretory IL-1 receptor antagonist (sIL1Ra), soluble TNF receptor I and II] (Liew et al., 2005).
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Flagelin [FliC; a ligand for TLR5 (Yoon et al., 2012) and NAIP5-
NLRC4 (Tenthorey et al., 2017)] is the monomeric protein
constituent of flagella, a whip-like appendage, which provides
motility for bacteria. As one of the few protein ligand for
TLRs, FliC is exceptional in activating both innate and adaptive
immunity. Studies have documented that FliC can function as
vaccine adjuvant (Mizel and Bates, 2010) and serve as a major
antigen in Crohn’s disease (Lodes et al., 2004). However, little
is known with respect to the functional properties of anti-
FliC antibodies (Ab) and whether they could modulate TLR5
response. Lipopolysaccharide [LPS; a TLR4 ligand] is a bacterial
glycolipid that comprises the outer membrane of Gram-negative
bacteria. Pre-exposure of macrophages and epithelial cells to
FliC or LPS, has been reported to induce hyporesponsiveness to
subsequent exposures in vitro (Medvedev et al., 2000; Otte et al.,
2004; Sun et al., 2007). LPS pre-treatment could also regulate
TLR5 responses to FliC in vitro, though the magnitude of such
“cross-tolerance” depends on the doses and cell-type studied
(Mizel and Snipes, 2002; Sun et al., 2007; Li et al., 2012).

The purpose of this study was to determine if pre-treating
mice with FliC would blunt the innate immune response to
FliC re-challenge. We measured serum keratinocyte-derived
chemokine (KC) and interleukin (IL)-6 as putative markers
for TLR activation. NAIP5-NLRC4 is a cytosolic receptor for
FliC, whose activation induces inflammasome; accordingly,
we measured serum IL-18 as the marker for its activation.
Additionally, we measured the levels of anti-FliC Ab and
investigated whether they have a role in dampening the innate
immune response upon subsequent FliC re-challenge. We extend
this study also to examine the efficacy of anti-FliC Ab against
enteric and systemic infection by Salmonella typhimurium.

MATERIALS AND METHODS

Reagents
FliC from S. typhimurium (SL3201, fljB-) was purified through
sequential cation and anion-exchange chromatography as
previously described (Gewirtz et al., 2001b). LPS from Escherichia
coli 0128:B12 was purchased from Sigma-Aldrich (St. Louis,
MO). Reagents and antibodies for ELISA were purchased from
R&D Systems (Minneapolis, MN).

Mice
C57BL/6 WT and Rag1KO mice were procured from Jackson
Laboratories (Bar Harbor, ME) and bred under specific
pathogen-free condition at Pennsylvania State University (PSU).
Mice were housed in cages containing corncob bedding and
nestlet, fed ad libitum and maintained at 23◦C with a 12 h
light/dark phase cycle. Animal experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) at PSU.

Abbreviations: Ab, antibodies; FliC, flagellin; IL, interleukin; KC,

keratinocyte-derived chemokine; LPS, lipopolysaccharide; MAMPs, microbial-

associated molecular patterns; PRRs, pathogen recognition receptors; TLR,

Toll-like receptors.

Flagellin and LPS Challenge
Six-weeks-old male WT mice (n = 4) were treated with PBS,
LPS (10 µg), FliC (50 µg), LPS→ FliC, and FliC→ LPS (arrow
denoting secondary challenge 3 h after the initial treatment). On
day 18, mice were bled minimally and assayed for seroreactivity
to FliC and LPS. On day 21, mice were re-challenged with FliC
(50 µg) and bled after 2 h. In another experiment, six-weeks-old
male Rag1KO mice (n = 4) were treated with PBS or FliC at day
0 and re-challenged with FliC at day 21.

Serum Collection
Blood was collected into BD microtainer (BD Biosciences, San
Jose, CA) via non-terminal retro-orbital bleeding. Hemolysis-free
sera were obtained after centrifugation and stored at−80◦C until
further analysis.

Cell Culture
Human colon adenocarcinoma cell line HT29 was cultured on
24-well plates in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin and streptomycin. After cells became confluent, the
media was replaced with incomplete DMEM without FBS. Cells
were co-treated with PBS or FliC (50 ng/mL) in combination with
serum (1:50 dilution) from FliC-treated WT, naïve WT, or FliC-
treated Rag1KO mice. Cells were incubated for 5 h at 37◦C and
5% CO2. Culture supernatant was collected and stored at−80◦C
until further analysis.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Mouse KC and IL-6, and human IL-8 were analyzed using ELISA
kits (R&D Systems) according to the manufacturer’s instructions.
Mouse IL-18 were analyzed via an in-house ELISA as described
previously (Zhang et al., 2014). To measure IgG seroreactivity to
FliC and LPS, sera were diluted (1:500) and analyzed via ELISA
as described previously (Ziegler et al., 2008).

Bacterial Culture
Salmonella enterica subsp. enterica serovar Typhimurium (strain
SL3201) were cultured for 15 h in Luria-Bertani (LB) broth at
37◦C with shaking (200 rpm). Bacteria CFU were adjusted based
on OD at 600 nm.

Murine Models of Salmonella Infection
Six-weeks-old male WT mice were administered PBS or FliC (50
µg; i.p.) at day 0 and 14. On day 21, mice were infected with
Salmonella either orally (1 × 108 CFU; n = 5) or via i.p. (1 ×

104 CFU; n = 10) as previously described (Vijay-Kumar et al.,
2008a). Mice were monitored for body weight loss and mortality.

Statistical Analysis
Values are presented as mean ± SEM. Data were analyzed using
one-way analysis of variance (ANOVA) followed by post-hoc
Tukey’s multiple comparison test. Spearman correlation was
used to establish the association of two variables. Kaplan–Meier
survival curves were analyzed with log-rank (Mantel-Cox) test.
Data were considered significant at p < 0.05. All analyses were
performed using GraphPad Prism 6.0 (La Jolla, CA).
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FIGURE 1 | Anti-FliC Ab attenuates TLR5 and NAIP5-NLRC4 cytokine responses to FliC re-challenge. Six week old male WT mice (n = 4) were challenged with either

PBS, LPS (10 µg) or FliC (50 µg). Sera were collected after 2 h and analyzed for (A) KC and (B) IL-6. In another experiment, 6 week old WT mice (n = 4) were

challenged with PBS, LPS, FliC, LPS→ FliC, FliC→ LPS with the arrow denoting secondary challenge 3 h after the initial treatment. At day 18 post-treatment, sera

were collected and measured for (C) seroreactivity to flagellin and (D) seroreactivity to LPS. At day 21 post-treatment, the mice were re-challenged with FliC (50 µg).

Sera were collected after 2 h and analyzed for (E) KC, (F) IL-6, and (G) IL-18. Correlations between seroreactivity to FliC against serum (H) KC [Spearman correlation

(r = −0.8706; p (two-tailed) < 0.0001)], (I) IL-6 (r = −0.7566; p = 0.0007), (J) IL-18 (r = −0.8206; p = 0.0002). Six week old male Rag1KO mice (n = 4) were

pre-treated with either PBS or FliC (50 µg) at day 0. At day 21, mice were challenged with FliC. Sera were collected 2 h post-treatment and analyzed for (K) KC, (L)

IL-6, and (M) IL-18. HT29 cells were co-treated with FliC and serum from either FliC-treated WT, naïve WT, or FliC-treated Rag1KO mice. (N) Five-hour culture

supernatants were assayed for secretion of IL-8. Results presented as mean ± SEM and are representative of two independent experiments. ND, not detected. Data

in (H–J) were analyzed with Spearman correlation test. All other data were analyzed via ANOVA with post-hoc Tukey’s test with *p < 0.05.
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RESULTS

LPS Suppresses the Adaptive Immune
Response to Flic in vivo
The immune system would be exposed to multiple TLR ligands,
particularly during polymicrobial sepsis. While MAMPs have
been shown to induce immune tolerance in vitro (Medvedev
et al., 2000; Mizel and Snipes, 2002; Otte et al., 2004; Sun et al.,
2007; Li et al., 2012), the occurrence of tolerance is relatively
under-studied in vivo (De Vos et al., 2009). First, we estimated
the cytokine responses in mice challenged with approximately
equimolar concentration of 10 µg LPS (∼10 kDa) or 50 µg FliC
(∼50 kDa). LPS-treatedmice displayed∼ 2-fold more increase in
serum KC and IL-6 than FliC-treated mice (Figures 1A,B). Such
observation is consistent with our previous study demonstrating
that LPS is more potent in inducing innate immunity, including
TNFα response, than FliC (Vijay-Kumar et al., 2008b).

Studies from our group (Sanders et al., 2006, 2008, 2009; Vijay-
Kumar et al., 2010) and others (Letran et al., 2011; Atif et al., 2014;
Lopez-Yglesias et al., 2014; Li et al., 2016) demonstrate that TLR5
is required for promoting optimal adaptive responses to FliC. We
asked whether such response could be impeded when mice were
administered with LPS shortly before or after FliC. Assessment on
mice at day 18 post-treatment revealed that their seroreactivity to
FliC was in the order of FliC > FliC→ LPS > LPS→ FliC > PBS
(Figure 1C). Increased seroreactivity to LPS was also observed in
the order of LPS≥ LPS→ FliC≥ FliC→ LPS (Figure 1D), albeit
not reaching significance, but nonetheless suggest that anti-LPS
response could also be disrupted by FliC. The negligible levels
of anti-FliC Ab in mice given only LPS, as well as anti-LPS Ab in
mice given only FliC, indicated the specificity of the Ab generated
(Figures 1C,D).

Anti-FliC Antibodies Dampen the Innate
Immune Response to FliC
Next, we investigated whether anti-FliC could modulate TLR5
responses. To address this possibility, we re-challenged the
aforementioned FliC/LPS-treated mice on day 21 with FliC.
Serum KC, IL-6, and IL-18 induced by FliC were strikingly
diminished in FliC pre-treated mice, when compared to naïve
mice given FliC for the first time (Figures 1E–G). Mice pre-
treated with LPS→ FliC or FliC→ LPS also displayed
modest reduction in serum KC, IL-6, and IL-18 following FliC
re-challenge (Figures 1E–G). Regression analyses affirmed the
strong negative correlations between serum anti-FliC Ab with
either KC, IL-6, or IL-18 levels (Figures 1H–J), thus implicating
the involvement of adaptive immunity underlying the tolerance
to FliC.

Loss of Adaptive Immunity Abrogates
Immune Tolerance to FliC Re-challenge
To address whether adaptive immunity is required for the
tolerance to FliC, we employed RAG1-deficient (Rag1KO) mice,
which lack mature T and B cells and, therefore, are unable
to generate any Ab. Unlike WT mice, Rag1KO mice were not
refractory to FliC re-challenge (Figures 1K–M) regardless of
whether they have or have not been previously exposed to FliC.

Such outcomes imply that the tolerance observed in WT mice is
likely antibody-dependent. To affirm such notion, we co-treated
HT29 cell line (a model intestinal epithelia) with FliC and serum
from FliC-treated or untreated WT mice; FliC-treated Rag1KO
mice sera was used as negative control. As anticipated, only serum
with anti-FliC suppressed FliC-induced secretion of IL-8 (human
homolog of KC) from HT29 cells (Figure 1N).

Adaptive Response to FliC Protects Mice
Against Salmonella Infection
Having demonstrated the role of anti-FliC in mitigating TLR5
response, we next investigated their physiological significance
in a natural infection model of S. typhimurium. Compared to
controls, mice pre-treated with FliC displayed a slight trend
toward a delayed body weight loss and mortality upon oral
infection (Figures 2A,B). Such protection was more pronounced
when Salmonella was administered intraperitoneally to mimic
systemic infection (Figures 2C,D). These findings suggest that
adaptive immunity to FliC are not bystander responses, but may
have a role in conferring protection against enteric and systemic
infection by Salmonella.

FIGURE 2 | Adaptive immunity to FliC protects mice from Salmonella

infection. Six week old male WT mice were treated with FliC (50 µg) on day 0

and 14, and infected with Salmonella typhimurium on day 21. (A) Percent

body weight and (B) Kaplan–Meier survival curve for mice receiving oral

infection (108 CFU bacteria; n = 10). (C) Percent body weight and (D)

Kaplan-Meier survival curve for mice receiving intraperitoneal infection (104

CFU bacteria; n = 10). Results presented as mean ± SEM. Data (A–D) are

pooled from two independent experiments. *p < 0.05 (Student’s t test) for

(A,C); *p < 0.005 [Log-rank (Mantel-Cox) test] for (B,D).
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DISCUSSIONS

Here we delineate a reciprocal interaction between the innate and
adaptive immunity in modulating host responses to FliC in vivo.
Our results demonstrate that anti-FliC Ab are capable of exerting
tolerance to subsequent FliC re-challenge. The attenuation in
cytokine responses downstream of TLR5 and NLRC4 could be,
in part, due to formation of FliC-Ab complex that may undergo
rapid degradation via Fc receptor-mediated phagocytosis. While
the binding sites between TLR5 and FliC have been elucidated
(Smith et al., 2003), the antibody binding sites to FliC is not clear.
Further studies are required to interrogate the antibody isotype
variants of anti-FliC Ab, as well as the epitope and paratope
interaction between FliC and anti-FliC, respectively. Deciphering
such molecular interactions may help in designing anti-FliC Ab
with high affinity and avidity for passive immunization to treat
flagellated bacterial infections.

Intriguingly, administration of LPS during the initial FliC
challenge interfered with the anti-FliC response. As TLR4 and
TLR5 share a common signaling pathway (i.e., MyD88) (Mizel
and Snipes, 2002; Sato et al., 2002; Otte et al., 2004), it is possible
that activation of the former by LPS could have dampened the
latter. Such cross-tolerance may explain the suboptimal anti-
FliC Ab response that requires proper TLR5 function. LPS
could also disrupt proper antigen processing or presentation
of FliC, potentially via inducing proteases that degrade FliC or
serving as a competing antigen. Despite LPS being regarded as a
potent vaccine adjuvant (Coffman et al., 2010), it is interesting
to note that it has poor adjuvanicity in potentiating anti-FliC
Ab generation.

Though we observed modest improvement in overall survival
in FliC-treatedmice over naïvemice against Salmonella infection,
the extent of protection appears to depend on the route and
course of infection. Since oral infection requires the pathogen
to first colonize and breach the mucosal barrier, this would
provide opportunity for Salmonella to alter FliC expression and
thus evade the host innate immune system. Interaction with

the host cell membrane lysophospholipid cues Salmonella to
secrete FliC monomers (Subramanian and Qadri, 2006), thus
activating innate immunity (Gewirtz et al., 2001b) and recruiting
macrophages to serve as carriers for dissemination. Upon
transitioning from extra- to intra-cellular phase of infection,
Salmonella could downregulate their FliC expression (Cummings
et al., 2005, 2006; Alaniz et al., 2006). On the flip side,
administration of Salmonella directly into systemic circulation
renders themmore susceptible to anti-FliC Ab since the pathogen
may not sufficiently and timely downregulates FliC expression.

Although anti-FliC Ab are integral for immunity against
Salmonella, their functional capacities are poorly characterized.
It was not until much recently that anti-FliC Ab are shown not to
be mere bystanders, but could mediate anti-bacterial activity in
humans (Maclennan et al., 2008; Ramachandran et al., 2016). Our
present study extends this body of knowledge by elucidating that
anti-FliC Ab also counter-regulates innate immunity following
repeated exposure to FliC and that this regulation could be
hindered by LPS.
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