335 research outputs found

    Design of a Mach-3 Nozzle for TBCC Testing in the NASA LaRC 8-ft High Temperature Tunnel

    Get PDF
    A new nozzle is being constructed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The axisymmetric nozzle was designed with a Mach-3 exit flow for testing Turbine-Based Combined-Cycle engines at a Mach number in the vicinity of the transition from turbojet to ramjet operation. The nozzle contour was designed using the NASA Langley IMOCND computer program which solves the potential equation using the classical method of characteristics. To include viscous effects, the design procedure iterated the MOC contour generation with CFD Navier-Stokes calculations, adjusting MOC input parameters until target nozzle-exit conditions were achieved in the Navier-Stokes calculations. The design process was complicated by a requirement to use the final 29.5 inches of an existing 54.5-inch exit-diameter Mach-5 nozzle contour. This was accomplished by generating a Mach-3 contour that matched the radius of the Mach-5 contour at the match point and using a 3rd order polynomial to create a smooth transition between the two contours. During the final evaluation of the design it was realized that the throat diameter is more than half that of the upstream mixing chamber. This led to the concern that large vortical structures generated in the mixer would persist downstream, affecting nozzle-exit flow. This concern was addressed by analyzing the results of three-dimensional, viscous, numerical simulations of the entire flowfield, from the exit of the facility combustor to the nozzle exit. An analysis of the solution indicated that large scale structures do not pass through the throat and that both the total temperature and species (CO2) are well mixed in the mixer, providing uniform flow to the nozzle and subsequently the test cabin

    Concentration-Dependent Domain Evolution in Reaction–Diffusion Systems

    Get PDF
    Pattern formation has been extensively studied in the context of evolving (time-dependent) domains in recent years, with domain growth implicated in ameliorating problems of pattern robustness and selection, in addition to more realistic modelling in developmental biology. Most work to date has considered prescribed domains evolving as given functions of time, but not the scenario of concentration-dependent dynamics, which is also highly relevant in a developmental setting. Here, we study such concentration-dependent domain evolution for reaction–diffusion systems to elucidate fundamental aspects of these more complex models. We pose a general form of one-dimensional domain evolution and extend this to N-dimensional manifolds under mild constitutive assumptions in lieu of developing a full tissue-mechanical model. In the 1D case, we are able to extend linear stability analysis around homogeneous equilibria, though this is of limited utility in understanding complex pattern dynamics in fast growth regimes. We numerically demonstrate a variety of dynamical behaviours in 1D and 2D planar geometries, giving rise to several new phenomena, especially near regimes of critical bifurcation boundaries such as peak-splitting instabilities. For sufficiently fast growth and contraction, concentration-dependence can have an enormous impact on the nonlinear dynamics of the system both qualitatively and quantitatively. We highlight crucial differences between 1D evolution and higher-dimensional models, explaining obstructions for linear analysis and underscoring the importance of careful constitutive choices in defining domain evolution in higher dimensions. We raise important questions in the modelling and analysis of biological systems, in addition to numerous mathematical questions that appear tractable in the one-dimensional setting, but are vastly more difficult for higher-dimensional models

    Do Drowsy Driver Drugs Differ?

    Get PDF
    This research paper explores how different drug mechanisms within a single class of drugs can produces different profiles of driving impairment. Prior research has failed to consider these mechanistic differences and often utilizes less controlled study methodologies. The potential impact of differing mechanistic effects is important for practitioners but remains unclear for most drugs. Twentynine licensed drivers in good general health completed one of two miniSim™ studies using a validated, standardized, driving impairment scenario. Both drugs caused degradation in lateral control measures of standard deviation of lane position (SDLP) and number of lane departures, however only diphenhydramine was found to cause a significant change in steering bandwidth. The studied drugs differed in their effects on all longitudinal driving measures with diphenhydramine effecting speed and alprazolam effecting the standard deviation of speed. Difference in therapeutic mechanism of action results in differing pharmacodynamic driving performance outcomes. This analysis reinforces the importance of careful consideration of a drug’s specific mechanism of action when considering a sedating drug’s impact on a patient’s ability to safely operate a motor vehicle

    Heterogeneity induces spatiotemporal oscillations in reaction-diffusions systems

    Get PDF
    We report on a novel instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable, or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity, and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity

    From One Pattern into Another: Analysis of Turing Patterns in Heterogeneous Domains via WKBJ

    Full text link
    Pattern formation from homogeneity is well-studied, but less is known concerning symmetry-breaking instabilities in heterogeneous media. It is nontrivial to separate observed spatial patterning due to inherent spatial heterogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability which are local versions of the classical Turing conditions We find that the structure of unstable modes differs substantially from the typical trigonometric functions seen in the spatially homogeneous setting. Modes of different growth rates are localized to different spatial regions. This localization helps explain common amplitude modulations observed in simulations of Turing systems in heterogeneous settings. We numerically demonstrate this theory, giving an illustrative example of the emergent instabilities and the striking complexity arising from spatially heterogeneous reaction-diffusion systems. Our results give insight both into systems driven by exogenous heterogeneity, as well as successive pattern forming processes, noting that most scenarios in biology do not involve symmetry breaking from homogeneity, but instead consist of sequential evolutions of heterogeneous states. The instability mechanism reported here precisely captures such evolution, and extends Turing's original thesis to a far wider and more realistic class of systems.Comment: 23 pages, 7 Figure

    Direct-View Multi-Point Two-Component Interferometric Rayleigh Scattering Velocimeter

    Get PDF
    This paper describes an instantaneous velocity measurement system based on the Doppler shift of elastically scattered laser light from gas molecules (Rayleigh scattering) relative to an incident laser. The system uses a pulsed laser as the light source, direct-viewing optics to collect the scattered light, an interferometer to analyze spectrally the scattered light mixed with the incident laser light, and a CCD camera to capture the resulting interferogram. The system is capable of simultaneous, spatially (approximately 0.2 mm(exp 3)) and temporally (approximately 40 ns) resolved, multiple point measurements of two orthogonal components of flow velocity in the presence of background scattered light, acoustic noise and vibrations, and flow particulates. Measurements in a large-scale axi-symmetric Mach 1.6 H2-air combustion-heated jet running at a flow sensible enthalpy specific to Mach 5.5 hypersonic flight are performed to demonstrate the technique. The measurements are compared with CFD calculations using a finite-volume discretization of the Favre-averaged Navier-Stokes equations (VULCAN code)

    Patterning of nonlocal transport models in biology: The impact of spatial dimension

    Get PDF
    Throughout developmental biology and ecology, transport can be driven by nonlocal interactions. Examples include cells that migrate based on contact with pseudopodia extended from other cells, and animals that move based on their awareness of other animals. Nonlocal integro-PDE models have been used to investigate contact attraction and repulsion in cell populations in 1D. In this paper, we generalise the analysis of pattern formation in such a model from 1D to higher spatial dimensions. Numerical simulations in 2D demonstrate complex behaviour in the model, including spatio-temporal patterns, multi-stability, and patterns with wavelength and shape that differ significantly depending on whether interactions are attractive or repulsive. Through linear stability analysis in N dimensions, we demonstrate how, unlike in local Turing reaction-diffusion models, the capacity for pattern formation fundamentally changes with dimensionality for this nonlocal model. Most notably, pattern formation is possible only in higher than one spatial dimension for both the single species system with repulsive interactions, and the two species system with 'run-and-chase' interactions. The latter case may be relevant to zebrafish stripe formation, which has been shown to be driven by run-and-chase dynamics between melanophore and xanthophore pigment cells

    Patterning of nonlocal transport models in biology: the impact of spatial dimension

    Full text link
    Throughout developmental biology and ecology, transport can be driven by nonlocal interactions. Examples include cells that migrate based on contact with pseudopodia extended from other cells, and animals that move based on their vision of other animals. Nonlocal integro-PDE models have been used to investigate contact attraction and repulsion in cell populations in 1D. In this paper, we generalise the analysis of pattern formation in such a model from 1D to higher spatial dimensions. Numerical simulations in 2D demonstrate complex behaviour in the model, including spatio-temporal patterns, multi-stability, and the selection of spots or stripes heavily depending on interactions being attractive or repulsive. Through linear stability analysis in NN dimensions, we demonstrate how, unlike in local Turing reaction-diffusion models, the capacity for pattern formation fundamentally changes with dimensionality for this nonlocal model. Most notably, pattern formation is possible only in higher than one spatial dimension for both the single species system with repulsive interactions, and the two species system with `run-and-chase' interactions. The latter case may be relevant to zebrafish stripe formation, which has been shown to be driven by run-and-chase dynamics between melanophore and xanthophore pigment cells
    • …
    corecore