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Abstract Throughout developmental biology and ecology, transport can be driven by nonlocal inter
actions. Examples include cells that migrate based on contact with pseudopodia extended from other 
cells, and animals that move based on their awareness of other animals. Nonlocal integro-PDE models 
have been used to investigate contact attraction and repulsion in cell populations in 1D. In this paper, 
we generalise the analysis of pattern formation in such a model from 1D to higher spatial dimensions. 
Numerical simulations in 2D demonstrate complex behaviour in the model, including spatio-temporal 
patterns, multi-stability, and patterns with wavelength and shape that differ significantly depending on 
whether interactions are attractive or repulsive. Through linear stability analysis in N dimensions, we 
demonstrate how, unlike in local Turing reaction-diffusion models, the capacity for pattern formation 
fundamentally changes with dimensionality for this nonlocal model. Most notably, pattern formation 
is possible only in higher than one spatial dimension for both the single species system with repulsive 
interactions, and the two species system with ‘run-and-chase’ interactions. The latter case may be rel
evant to zebrafish stripe formation, which has been shown to be driven by run-and-chase dynamics 
between melanophore and xanthophore pigment cells.
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Dedication

This paper is dedicated to the memory of Edmund Crampin. For his doctorate, Edmund studied pattern 
formation in Turing systems and found new results on pattern selection due to domain growth. This 
work, to this day, is playing a very important role in the field. As well as being an outstandingly talented 
researcher, Edmund was very supportive of all those around him. He is sorely missed.

1 Introduction

Biological development primarily occurs in two or three spatial dimensions. Mathematical models of 
biology must therefore balance the analytical and numerical challenges associated with these higher 
dimensions, against the ability to capture the essential driving phenomena (Mogilner and Odde, 2011). 
Most initial proof of concept papers for pattern formation models choose the simplicity of a 1D domain. 
In the context of canonical local reaction-diffusion models, this can be justified by linear theory, where 
dispersion relations are qualitatively the same for any number of dimensions (Krause et al., 2021). Of 
course, the nonlinear analysis and the possible shapes of patterns does change with dimensionality.

? Corresponding author
Emails: jewell@maths.ox.ac.uk, andrew.krause@durham.ac.uk, maini@maths.ox.ac.uk, gaffney@maths.ox.ac.uk

mailto:jewell@maths.ox.ac.uk
mailto:andrew.krause@durham.ac.uk
mailto:maini@maths.ox.ac.uk
mailto:gaffney@maths.ox.ac.uk


2 T. J. Jewell, A. L. Krause, P. K. Maini, E. A. Gaffney

A key example is the distinction between spots and stripes in 2D that does not exist in 1D (Ermen- 
trout, 1991). Conversely, the impact of different spatial dimensions on nonlocal models of biological 
self-organisation, particularly in terms of linear stability and capacity for pattern formation, is under
studied.

In this work, we look at the highly influential nonlocal attraction and repulsion model for cell pop
ulations introduced by Painter et al. (2015), based on the earlier model by Armstrong et al. (2006). We 
generalise their analysis of pattern formation of cell aggregates from 1D to N dimensions (ND), mo
tivated by 2D and 3D biological applications. Most studies analysing the stability of related models 
only examine the 1D case, with the notable exception of Dyson et al. (2013), which takes a functional 
analytical viewpoint and does not consider dispersion relations, for instance.

Distinct from models such as Britton (1989); Maruvka and Shnerb (2006), in which the nonlocality 
features only in reaction-kinetics, the Painter et al. (2015) and Armstrong et al. (2006) models incorporate 
nonlocality purely through cell-migration in an advection term. These latter nonlocal models thus lie 
within the broader context of a shift in focus in the field of pattern formation from biochemical reaction
kinetics to transport and migration dynamics. Increasingly, an area of active interest is highlighting that 
many biological pattern forming processes and the predictions of corresponding theoretical models 
both heavily depend on the details of transport dynamics beyond simple diffusion (Kondo et al., 2021).

The Painter et al. (2015) model assumes that agents can interact nonlocally, which is primarily inter
preted in a developmental biology context in terms of cells which can extend protrusions (pseudopodia) 
such as filopodia or lamellipodia that transmit signals or force to other cells which are relatively far from 
the original cell. In some contexts, such as for the pigment cells of newts, these filopodia can extend up 
to ten times the cell diameter (Tucker and Erickson, 1986). The nonlocal interaction can be repulsive, 
such as with fibroblast cells in the neural crest which move apart when their lamellipodia come into 
contact (Carmona-Fontaine et al., 2008). It can also be attractive, for example representing adhesion be
tween cells. In fact, Villa et al. (2022) use such an approach to incorporate adhesion in their model of 
vasculogenesis, the de novo formation of blood vessels.

Nonlocal transport models are also used in the context of ecology, where animal populations form 
territorial patterns driven by nonlocal interactions (Potts and Lewis, 2019; Potts, 2019). Animal swarms, 
such as flocks of birds or swarms of locusts, are also modelled using a similar framework, with inves
tigations by Mogilner and Edelstein-Keshet (1999) predating the work of Armstrong et al. (2006). For 
a recent example and a brief review of swarming models, see Georgiou et al. (2021). Nonlocality in 
ecology can take the form of direct long-ranged interaction mediated by sight or smell, or indirect in
teraction through leaving scent markings or through retained memory of previous encounters between 
animals.

A significant application of nonlocal transport models in the context of pattern formation is to the 
development of zebrafish stripes. Zebrafish are model species commonly used to study pattern forma
tion in developmental biology due to the availability of their mutant types, the comprehensive under
standing of their genome, and the ability for their stripes to regenerate in adults (Kondo et al., 2021). 
Yamanaka and Kondo (2014) proposed that these stripes are primarily formed through nonlocal ‘run- 
and-chase’ interactions between two species of pigment cell: xanthophore cells extend pseudopodia to 
melanophore cells and are attracted towards melanophores, whilst melanophores are repelled away 
from the xanthophores. With this in mind, Painter et al. (2015) analysed their own model in 1D, but 
found that purely run-and-chase dynamics with two species could not drive pattern formation. In this 
work, we investigate whether this capacity for pattern formation changes with the introduction of two 
or more spatial dimensions. Furthermore, we examine not only run-and-chase dynamics, but all com
binations of attractive and/or repulsive interactions with general interaction kernels for both the single 
species and two species cases.

We begin with the single species case in ND, defining the model in Section 2. In Section 3 we perform 
linear stability analysis, making use of hyperspherical Bessel functions to derive the dispersion relation, 
which we then summarise and analyse in Section 4 to gain insight on the conditions for pattern forma
tion. In Section 5 we present a physical interpretation of the results to intuitively explain the effect of 
dimensionality on pattern formation. In Section 6 we present numerical simulations of the 2D case to 
validate the predictions of linear instability and explore beyond the linear regime. Then, in Section 7, 
we apply all of these techniques to investigate the two species case. Finally, in Section 8, we discuss the 
significance of our findings.
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2 Model in N Dimensions

We nominally interpret the following model in a developmental biology context, in which the agents 
are cells with nonlocal terms representing pseudopodia induced interactions. However due to the gen
erality of each term, the model could apply to a general class of systems in which agents diffuse and 
interact through nonlocal advection.

We study the continuum model introduced in Painter et al. (2015) describing the time evolution of 
the population density, u(x, t), for a single species of cell at position x e RN and time t. An infinite 
domain is chosen in order to focus on patterning due to nonlocal interactions, rather than geometry or 
boundary conditions. In the model, cells can diffuse, proliferate and die, and interact nonlocally. This 
nonlocal interaction induces a flux per unit cell density at ( x, t) given by

1sF(x, t) = p(u(x, t)) p N s n^ I - } g(u(x + s, t)) ds .

du = V2u + h(u) — V • unp(u) GN RN s Q g(u(x + s, t)) dsN

where u = u(x, t), unless explicitly specified. Diffusion is incorporated through the Laplacian. Local 
cell proliferation and death is included via the function h(u). We specify that these proliferation-death 
kinetics have a positive equilibrium at u = U where h (U) = 0 and dhu ) | u < 0. Additionally we 

focus on the case where p (U) > 0 and 'gu) | u > 0. These two inequalities are not required for the 

dispersion relation we derive in the stability analysis, however if p (U) dgu) | u < 0 then some of the 
predicted behaviour of attractive and repulsive interactions would be swapped. The first inequality 
is the statement that (at density U) the packing forces, which are a reactive normal force, cannot be 
actively stronger than the nonlocal interaction against which they are reacting, and hence cannot reverse 
the direction of the flux of cells. The second inequality specifies that (at density U), the higher the 
density of cells in a region, the stronger the interaction from that region. Both inequalities are reasonable 
assumptions for most models.

For conciseness Eq. (3) is already non-dimensionalised, as in this work we are investigating the 
underlying dynamics and stability of such models, rather than strictly modelling a specific biological 
system. The population density u should be thought of as relative to some packing density scale, whilst 
distances are relative to some reference length scale, and the nonlocal flux and proliferation-death ki
netics have timescales relative to the timescale dictated by diffusion. For detailed discussion of the 
non-dimensionalisation, see Painter et al. (2015).

R G \ G /
(1)

Here, the integral sums the flux per unit cell density at x induced by interactions from cells at every 
point x + s, where s = | s | s = ss. Accordingly, dsN is the N dimensional volume element. The magni
tude of flux generated by cell density u varies as some function g(u). This flux is assumed to be parallel 
to the direction of separation between cells, hence the s term in the integrand. How this interaction 
varies with separation is characterised by the interaction kernel, Q ( | 1, which is normalised without 
loss of generality such that

dsN = GN, (2)

where G is a characteristic length scale called the signalling range. The overall magnitude of the gener
ated flux scales with p, the interaction strength, which also dictates the direction: p > 0 corresponds 
to attractive interactions, whilst p < 0 corresponds to repulsive interactions. In line with Painter et al. 
(2015) we focus on the case where Q I | I is a non-negative function, and so either all cells are attracting 
or all cells are repelling, for all separation distances. This choice does not affect the dispersion rela
tion we later derive. It is important to note that we assume that the nonlocal interaction is isotropic in 
space, and so Q I ^ 1 is a function of only the magnitude of separation, s. Finally, the flux is regulated by 
some packing function, p(u), representing, for example, contact inhibition and more generally prevents 
infinite densities forming at a point.

The total flux of cells at (x, t) due to the nonlocal interaction is then taken as proportional to u(x, t)F(x, t), 
where F(x, t) is given by Eq. (1). The divergence, V-, of this flux thus contributes to the time evolution 
of the density, given by

(3)
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In contrast to standard Turing patterning systems (Turing, 1952; Krause et al., 2021), the model de
fined by Eq. (3) can support pattern formation even with just a single species. The conditions under 
which this pattern formation can occur, and the character of the patterns, was extensively explored in 
Painter et al. (2015) in 1D. Here we perform investigations in ND, which allows more concise analysis 
of the biologically relevant 2D and 3D cases as well as providing clearer insight into the underlying 
effects of changing the number of spatial dimensions.

We begin these investigations with linear stability analysis.

3 Derivation of Dispersion Relation

Following the standard procedure when determining the conditions for pattern formation (Murray, 
2002; Krause et al., 2021), we linearise our integro-PDE about the positive spatially uniform steady state 
u(x, t) = U, and consider whether a small heterogeneous perturbation such that a(x, t) = U + a(x, t), 
where | a (x, t) | ^ 1, will decay back to homogeneity or grow. From Eq. (3) we see that the homogeneous 
steady state is at the equilibrium of the proliferation-death kinetics, i.e. h(U) = 0. Linearising about this 
state gives, to leading order,

dU = v2a + h'(u)a - Up(u)g'(u) QN v • (s n a(x + s, t) dsN) , (4)

where h' (U) = dhda । u and g'(U) = । u .
We can see that for a spatially homogeneous solution to Eq. (4), only the h0 (U) term is non-zero. We 

consider a stable equilibrium of the proliferation-death kinetics, so that h0 (u) < 0, and thus the system 
is stable to spatially homogeneous perturbations, in analogue with the standard Turing instability.

To solve Eq. (4), we use the standard technique of expanding into independent modes of the form 
u = a0ek•xeAt, with wave-vector k and growth rate A. This yields the dispersion relation

A = -k2 + h'(U) - Up(U)g'(U)^ ki [ (k • s) Q s^kik•s dsN, (5)
Q N RNN \QJ

where k = kk.
It is important to note that Eq. (5) relies on the use of either: 1) an infinite domain, or 2) periodic 

boundary conditions on a finite rectangular domain with Q I s I having compact support (with a small 
enough support compared to the domain lengths to prevent self interacting points). A finite domain 
without periodic boundary conditions would imply that the limits, and therefore value, of the integral 
in this equation would be dependent on x, which invalidates the expansion in terms of spatial modes. 
The linear analysis of the model for different boundary conditions and geometries is left for future 
work. As previously noted, we assume an infinite domain, x E RN. The choice of periodic boundary 
conditions on a finite domain would yield the same dispersion relation, but with the added constraint 
that k can only take values that correspond to integer numbers of wavelengths spanning the domain, 
i.e. ki = 2n n, where ki is the component of k in the direction parallel to an axis of the domain, and Li is 
the length of the domain along this axis.

To evaluate the dispersion relation, Eq. (5), we note that the nonlocal term is proportional to the 
ND Fourier transform of a radial vector function with isotropic argument, r Q Q). To evaluate this, 

we first consider the simpler case of an isotropic scalar function, f (r), and show that these Fourier 
transforms can be naturally described in terms of hyperspherical Bessel functions with hyperspherical 
Hankel transforms.

3.1 ND Fourier Transform of f (r)

The ND Fourier transform of an isotropic function f (r) is defined as 

f( k) = R Nf (r) ek ^ r d rN,

which is known (Sneddon, 1995) to be equal to the Hankel transform given by

z s N-1
/ 1 \ 2 , N f~ N. .f(k) = (k) (2n)2 Jo r2f(r)JN—1(kr)dr, 

(6)

(7)
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where Ja (x) is the a order Bessel function of the first kind.
We consider this transform in the context of hyperspherical Bessel functions, which are an ND gen

eralisation of Bessel functions, defined by Avery and Avery (2006) and Wen and Avery (1985) as

Ji+N-1(x)
ji (x) = an--- 2N~j—, (8)

x 2 1

where l 6 N U {0}. For convenience, we will use the normalisation An = r 2N—1 so that j0N)(0) =

1, where r is the gamma function.
In this case, Eq. (7) becomes

N Of (k) = —v-y [ f(r) rN-1 j0 } (kr) dr. (9)
ri N oo1 \ 2 /

In other words, the ND Fourier transform of an isotropic scalar function is equivalent to a zeroth order 
hyperspherical Hankel transform.

In 1D, j0(1) (x) = cos(x) and the hyperspherical Hankel transform reduces to a Fourier cosine trans-
(2)form. In 2D, j0 (x) = J0 (x) and so the transform is the canonical zeroth order Hankel transform. Sim

ilarly in 3D, j(3)(x) = jo (x) = smxx), which is the zeroth order spherical Bessel function, and so the 
transform is a zeroth order spherical Hankel transform.

With this result for the transform of f (r), we can find the relevant transform for rf (r), which matches 
the form in our dispersion relation.

3.2 ND Fourier Transform of rf (r)

Many of the relationships between standard Bessel functions of different orders l also apply for hyper- 
spherical Bessel functions. For example, the derivative of a zeroth order Bessel function is the negative 
of a first order Bessel function, Jx) = - J1 (x), and this is also true for hyperspherical Bessel func
tions. We can prove this using a well documented recurrence relation for standard Bessel functions, 
dx (xx))^) = — JA, with the definitions in Eq. (8) such that

d ( N) d—j (xx) = AN —dx 0 dx
JN

2
1( x A

-n
Jn (x)

— AN 2n_1 
x 2 1

j1(N)(x). (10)N 
x 2

—

This relation is useful for determining the ND Fourier transform, F (k), of a radial vector function 
with isotropic argument, rf (r), which is given by

F (k) = n?f (r) eik •r d rN. (11)

Implicit in the working presented below is sufficient smoothness of the integrands to allow the 
commutation of limiting processes. Then, by using the gradient in k-space, Vk, we can deduce

F (k) = — i Vk / f^r) eik•r drN. 
k RN r (12)

f(r)Now as r is itself an isotropic function, we can use the result of Section 3.1 to write

„ N
2 n 2 t0 f^r) rN 1 j(N)(kr) d r

F (k ) = — i V k
r 0r

— k i 2^ tO f(r) rN—1 

r (N\ J0 r1 T

ddkj0N)(kr) dr
(13)

N o . .
= k i ,xy f ( r) rN-1 j 1 ) (kr ) d r.

r n 20
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Fig. 1: Plots of j1(N) (x) for the N = 1,2,3 cases. j1(1) (x) = sin(x), j1(2) (x) = J1 (x), and j1(3) (x) = j1(x) = 

x2sin( x) — x cos( x).

Thus, the ND Fourier transform of a general rf (r), has direction parallel to k and has magnitude equal 
to the first order hyperspherical Hankel transform of f (r).

In 1D, j1(1) (x) = sin(x) and we have the Fourier sine transform. In 2D, j1(2) (x) = J1 (x) and so the 

transform is the canonical first order Hankel transform. In 3D, j(3) (x) = j 1 (x) = sixx — cox—, which is 
the first order spherical Bessel function, and corresponds to the first order spherical Hankel transform.

For both f (r) in Eq. (9) and rf (r) in Eq. (13) we have reduced an ND integral to a 1D integral. In 
this process, the integral kernels change from complex exponentials to hyperspherical Bessel functions. 
All angular information is then contained within these new integral kernels. This angular information 
is intrinsic to, and changes with, the particular number of dimensions N, even when our original func
tions are isotropic. Section 5 explores an intuitive physical picture for why this angular information is 
dimensionally dependent and why it affects pattern formation.

With the above observations in mind, we should expect our biological system to behave differently 
in different numbers of dimensions. This is captured in the dispersion relation, which can now be de
termined using Eq. (13).

3.3 Back to the dispersion relation

From the results of Section 3.2, we can evaluate the nonlocal term in Eq. (5) as

. . N . .
i / (k • s) Q f |^ eik•s dsN =---------n^- / Q fs^sN-1 j(N)(ks) ds,
JRn X r (N\ 0o £ 1 v J ,

and so the dispersion relation becomes

A = — k2 + h0 (U) +

N , x
—UP ( U)g' ( U) 4 k / Q( sN-1 j(N)(ks) ds.
r n x u \t

(14)

(15)

3.4 Behaviour of j1(N) (x)

In order to interpret the dispersion relation, it is useful to understand the overall behaviour of j1(N) (x ), 
of which the N = 1, 2, 3 cases are plotted in Fig. 1.
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Firstly, as illustrated in Fig. 1, j(N)(0) = 0 and dj1dX'x) |0 > 0 for all N. This can be seen by the 
function’s small argument asymptotic form,

w = r (N^ 2--1 J-J^ - HXNOBJN-1 (x)N 1
() “ I 2 J x--1 r(- +1) V2/ x--1 (16)

x

j1(-)

in which we used the small argument asymptotic form for standard Bessel functions, Ja (x) ~ r(a+1) (2 )a• 
Secondly, considering the large argument approximation for Bessel functions, for which

Ja(x) a —x [sin(x + ^a) + O (x—1)] when x » a2 — 4, it follows that all j(N) (x) are approximated by

j(N)(x) a .1 1 hsin(x + $N) + O (x ^l , 
x 2 L /J

(17)

for x » 4(N2 — 1). In essence, all j(N)(x) oscillate as a sine wave, with some phase $n, enveloped 
by a negative power of x, with the power decreasing by a half with each added spatial dimension. 
Although these approximations have an unbounded relative error at the zeroes of the sine wave, due 
to the O(x-1) terms, the absolute error will be small and tends to zero as x tends to infinity. For the 
purposes of this paper, in which we will approximate integrals of j1(-) (x), only absolute errors are 
important.

3.5 Dependence on J

Finally, we highlight the relationship between the nonlocal signalling range J and the wavenumber k 
in the dispersion relation. By substituting s = qt, we can reparameterise the nonlocal term in Eq. (15) 
such that

^Nk ( J} sN—1 j(N)(ks) ds = 1-kJ £ci (q) qN—1 j(N)

1 , .
^ JG(kJ).

(kJq) dq
(18)

Here we see that all k dependence takes the form of the product kJ.

4 Dispersion Relation

For our nonlocal integro-PDE model in N dimensions, defined by Eq. (3), the dispersion relation be
tween linear growth rate A and spatial mode k is given by

N to / \
A(k) = — k2 + h'(U) + -212_ Up(U)g'(U) JNk^“ n (I) sN—1 j(N)(ks) ds, N e N

— A ., 27TN ............. 1 .
k2 + h’(U) + Up(U)g’(U)VG(kJ),

r N J

(19)

(20)N e N

in which j1( N) (x) are the first order, Nth dimensional hyperspherical Bessel functions where

j1(1) (x) = sin(x), (21)
j1(2)(x) = J1 (x), (22)

j (3)( x) = j 1 (x) = ^2 sin( x) — x cos( x). (23)
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Further, at x = 0,

j1(N) (0) =0,

dj1(N) (x)

dx
> 0, 

0

For x » 4 (N2 — 1) we can approximate,

j 1N) (x) a .... i sin(x + Qn), 
x 2

and so for ks » 4 (N2 — 1),

N—1
sN-1 j(N)(ks) a (_) 2 sin(ks + Qn), 

to a good approximation.

N e N, (24)

N e N. (25)

N e N, (26)

N e N, (27)

4.1 Analysis of Dispersion Relation

Here we have a dispersion relation that depends on diffusion through the —k2 term, proliferation
death through h0 (U), and the nonlocal interaction appears as a hyperspherical Hankel transform of 
the nonlocal interaction kernel Q I j 1. The form of this transform is controlled by the integral kernel, 
given by sN—1 j1(N) (ks), and this depends on the dimensionality of the system. For example, in 1D the 

transform reduces to a Fourier sine transform, leading to the 1D dispersion relation derived in Painter 
et al. (2015). In 2D and 3D, the integral kernels respectively are sJ1 (x) and s2j1 (x), corresponding to 
the first order Hankel and first order spherical Hankel transforms. This dependence on dimensionality 
arises because the integral transforms represent summations of interaction signals originating from all 
directions in space. Summations over a disk, for example, will behave differently to summations over a 
line. Section 5 uses this physical picture to intuitively explain some of the behaviour of our patterning 
system in different dimensions. However, to precisely determine this behaviour, we only have to study 
the properties of the integral transforms and their corresponding hyperspherical Bessel functions.

Firstly, for all dimensions, A (k) is always real, and so the wavemodes are purely growing or decaying 
- we should expect to have no temporal oscillations in the linear regime. Another notable feature is that 
for all N the homogeneous steady state’s stability to homogeneous perturbations depends only on the 
stability of the proliferation-death kinetics. This is evident from j1(N) (0) = 0 which implies that from 
Eq. (19) we have A(k = 0) = h0(U). We are interested in proliferation-death kinetics with a stable 
equilibrium U, and so A (k = 0) = h0 (U) < 0.

Next, we can show that heterogeneous perturbations with infinitely high frequency will decay, 
which is a requirement for a physically realistic Turing patterning system. Eqs. (27) and (19) tell us that 
as k ^ to, the nonlocal interaction term in the dispersion relation cannot grow faster than O (k(2 - 2)). 

For all N, this grows slower than the diffusion term, — k2. Thus, as k ^ to, A(k) ^ —to.
Additionally, this system can always have emerging spatial patterns, provided the interaction strength 

V is of sufficiently large magnitude and appropriately positive or negative. For finite k, there will in 
general always be some value of k for which the nonlocal interaction term in the dispersion relation is 
non-zero (for a non-zero interaction kernel). This means there will always be some value of ^ for which 
this term is positive and outweighs the negative diffusion and proliferation terms. In this case, A(k) 
would be positive, and so a heterogeneous perturbation would grow.

Together, the previous three observations tell us that this system can have a Turing bifurcation for 
any number of dimensions. Whether this occurs for attractive interactions (^ > 0) or repulsive interac
tions (p < 0) requires more analysis.

The fastest growing mode is simple to identify for parameters in which the nonlocal interaction is 
dominant over diffusion, as in this case we can approximate the growth rate by A (k) « Up (U) g 0 (U) p j Gn (kj). 
As this is a function of the product kj, its maximum is at k « | arg maxx Gn (x) for attractive interac
tions, and k « j arg minx Gn (x) for repulsive interactions. Here, arg maxx Gn (x) and arg minx Gn (x) 
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are positive real numbers that only depend on the dimensionality. The wavelength of the initially emer
gent pattern is therefore directly proportional to the nonlocal signalling range £ and insensitive to 
changes in any other parameter. This is consistent with what we might intuitively expect and is also 
observed in 1D in Painter et al. (2015).

4.2 Attractive Nonlocal Interactions

To have patterning for attractive nonlocal interactions (^ > 0) the hyperspherical Hankel transform in 
Eq. (19) must be positive for some k > 0 as this would allow A (k) to be positive for a sufficiently large 

| ^ |. We can show that this transform is indeed always positive for small non-zero values of k by looking 
at its derivative with respect to k: 

ar /-~dk z d sO . N-1 dj 1N)( ks )
0sN-<j< N >( ks) fTO 1 sd=k ds 15 lus

k=0 0 dk
> 0, 

k=0

(28)

where positivity is guaranteed by all terms in the integrand being positive.
We know that j1(N) (0) = 0, which implies that the transform is equal to zero at k = 0 and thus 

positive for small positive k. Therefore, for all N, attractive interactions can support Turing patterning 
for a sufficiently large interaction strength.

4.3 Repulsive Nonlocal Interactions

In contrast to attractive interactions, patterning can only occur for repulsive interactions (p < 0) when 
the hyperspherical Hankel transform in Eq. (19) is negative. We know from the above section that for 
small k the transform is positive and has positive gradient with respect to k. For ^ < 0 this implies that 
A is negative and decreasing for small k. Whether it will ever increase and be above zero (as k increases) 
depends on the interaction kernel.

From Fig. 1 we see that sN-1 j1(N) (ks) is oscillatory with s, and we also know that the first half of 
its initial oscillation is positive. Therefore for the specific case of a monotonic interaction kernel, we 
can determine the sign of the transform by comparing the contributions from the positive part of each 
oscillation of sN—1 j(N)(ks) against the subsequent negative part. If the product O (|) sN—1 j(N)(ks) 

decreases in amplitude as s increases, then the contribution from the positive part of each oscillation 
will be larger than its subsequent negative part, and thus the integral transform will be positive for 
all k. See Fig. 2 for a visual explanation. Similar arguments are used for the Fourier transform in Tuck 
(2006). If the above condition is broken, and instead the amplitude increased over some region, then the 
integral transform is not guaranteed to be positive for all k, which is significant because if any value of 
k leads to a negative integral transform, then pattern formation can occur (for sufficiently high |^|).

(N—1 \
s 2 I amplitude scaling from Eq. (27), it follows that:

if s - O ( |) is a non-increasing function, then pattern formation with repulsive interactions is not pos
sible. For example, in 1D, non-increasing interaction kernels can never support patterning for repulsive 
interactions. In contrast, in 2D, patterning with repulsive interactions can occur, but only for interaction 
kernels that decay slower than O (-^s) over some region. For the boundary case where s N-~ O ( s ) is 

constant, the transform is non-negative because the first peak in j1(N) (ks) is proportionally larger than 
the first trough for N > 1 and equal to it for N = 1. Hence the above wording of ‘non-increasing’ rather 
than ‘decreasing’. It is worth noting that all of these arguments also apply when the interaction kernel 
has compact support, such as the ‘top-hat’ kernel.

Compared to attractive interactions, which can enable patterning for small k, repulsive interactions 
can only enable patterning at larger values of k, because the hyperspherical Hankel transform is always 
positive for small k. Thus, assuming all other parameters are the same, repulsive interactions can form 
patterns with a shorter wavelength than attractive interactions. A further corollary is that repulsive in
teractions require a greater magnitude of interaction strength, | ^ |, to overcome the larger — k2 diffusion 
term, in order to form patterns. Physically, this corresponds to the stabilising effect of diffusion being 
stronger at shorter length scales.
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s

Fig. 2: A schematic of the integrand of the hyperspherical Hankel transform, it (j) sN 1 j(N)(ks), is 

plotted by the dashed line, for some decaying kernel. By pairing adjacent positive regions to negative 
regions (colour matched), we see that the total area is positive and so the integral is positive, when 
the amplitude of it (j) sN-1 j(N)(ks) is non-increasing. However, if it (j) were to decay sufficiently 

slowly (or even increase) over some region, then the amplitude of it ( j) sN-1 j(N)(ks) could increase 

over this region, potentially allowing negative regions of the integrand to outweigh positive regions, 
leading to a negative integral.

Most importantly, the inability for the 1D system to form patterns with repulsive interactions and 
non-increasing interaction kernels marks a fundamental difference between it and higher dimensional 
systems. The mathematical source of this difference is that the first order hyperspherical Hankel trans
form can only be negative for N > 1, assuming a non-increasing interaction kernel. In general, for a 
non-increasing interaction kernel, increasing the number of dimensions enables faster decaying inter
action kernels to support patterning with repulsive interactions. However, we must be careful not to 
assume that this always implies that increasing dimensionality promotes pattern formation with repul
sive interactions. For specific model applications, the realistic form of an interaction kernel may also 
change with dimensionality, and potentially counter the change in the integral kernel.

4.4 Transport-Only System

We now consider the specific case of h(u) = 0, also studied in Painter et al. (2015). In this case, cells 
do not proliferate or die, instead only undergoing diffusive and nonlocal transport, thus conserving 
total mass. This system can also admit pattern formation through Turing instabilities of a homogeneous 
state U, as seen from the dispersion relation, Eq. (19), with h (u) = 0, which still permits A (k) > 0 for 
some k > 0. However, a key distinguishing feature of the transport-only case is that there is no longer a 
unique stable homogeneous steady state, U, constrained by the proliferation-death kinetics. Instead, U 
is free to take any positive value, and in practise it will be dictated by initial conditions. The threshold 
for pattern-forming instability depends on this free parameter U, and therefore on the initial conditions, 
or equivalently, the total mass in the system.

5 Physical Interpretation

The dispersion relation can be understood more intuitively in a physical sense by comparing the mag
nitude and direction of the fluxes induced by the nonlocal interactions at a single point. In order for a
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Fig. 3: Schematics illustrating the influence of cells within a signaling range on an arbitrary point in 1D 
and 2D. (a)-(c) show an example perturbation of form 6sin(kx), with wavenumber k and amplitude 6, 
applied to a homogeneous state of density U in a 1D system with nonlocal interactions. We consider 
the fluxes of cells at a point p (dotted line) induced by cells within a distance £ (purple shaded region). 
In these examples, £ is smallest in (a), larger in (b), and largest in (c), where it equals a whole period 
of the perturbation. Thus, for (a), (b) the shaded area is larger to the right of p than to the left, and 
for (c) the areas are equal. (d), (e) show a heatmap of the density profile in the analogous 2D system 
with perturbation 6 sin(kxx) sin(ky y) applied to homogeneous density U. We consider fluxes of cells at 
a point p (crossed marker) induced by cells within distance £ (green circle). £ is smaller in (d) than in 
(e). Additionally, (e) includes arrows demonstrating the direction of fluxes of cells at p induced by cells 
at different points (for a repulsive interaction). Note: the arrows are displayed at the points where the 
signals originate but each flux contribution occurs at p.

U + 6 U + 6

heterogeneous perturbation to be stable, there cannot be a net flux of cells away from regions of high 
density.

We can analyse these fluxes by first considering only the nonlocal interaction with cell packing. 
In the original integro-PDE (Eq. (3)), the effects of diffusion, proliferation, and nonlocal interaction 
with packing contribute additively. In the linear dispersion relation, Eq. (19), these processes similarly 
contribute additively and independently, and so we can consider each process separately to investigate 
its effect on stability.

5.1 1D

For illustrative purposes, we first consider the simplest case of a 1D system with a top-hat function for 
the nonlocal interaction kernel, which has the form

s < t
s > t.

(29)

Using the notation of Painter et al. (2015), we call this the O1 kernel. It allows constant interaction within 
a distance £ and zero interaction beyond.

With this in mind, for a sinusoidal perturbation to the homogeneous state with frequency k, we can 
compare the induced fluxes at an arbitrary point p. Fig. 3(a)-(c) show such a point with the nearest high 
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density peak on its right (by symmetry the following argument will also hold if the nearest peak was 
on its left). If the total flux to the left is larger than the total flux to the right, then the net movement of 
cells is from high density to low density and the pattern will decay to homogeneity. If the opposite is 
true, then the amplitude of the perturbation will continue to grow, with some upper limit due to cell 
packing.

To determine the induced flux from each direction we simply sum the number of cells to the left 
and right of point p within distance f. Figs. 3(a)-(c) illustrate how the number of cells on the right is 
always larger than the number of cells on the left. The only exception is when f equals a whole number 
of periods of k, in which case they are equal, and thus the net flux is zero, but any inclusion of diffusion 
and/or proliferation-death will still destabilise the pattern. This is a fine-tuning observation; however, 
with all other values of f, for an attractive interaction, the greater number of cells to the right leads 
to a net induced flux to the right, and so the perturbation can always grow. Conversely, for repulsive 
interactions, the net flux at p is to the left and the pattern decays to homogeneity.

The above argument can be expressed mathematically via:

F a ux
r “ _

Q sin(k(x + p)) d x — / Q
J —TO

sin(k(x + p)) dx

Z sin(k(x + p)) dx — 0 Z sin(k(x + p)) dx
J—f

(30)
a ^x

a lix2cos(kp) [1 — cos(kf)].

As p is defined to the left of the nearest peak, — n < kp < J and thus 2cos(kp) [1 — cos(kf)] > 0. This 
shows that the contribution from the right is larger than from the left, in this case with the equality 
applying when f = 2^ for n & N, as stated above.

If we generalise to decaying interaction kernels in which cells further from p induce less flux at p, 
the same argument holds - the contribution from the right of p is always larger than the contribution 
from the left, even if we allow the interaction to act over an infinite range. Therefore in the general 1D 
case, attractive nonlocal interactions promote pattern formation whilst repulsive nonlocal interactions 
inhibit it. Including diffusion and/or proliferation-death only further dissipates any heterogeneity1, 
and so cannot enable pattern formation with repulsive interactions.

1 This is true in the single species system. However with multiple species, diffusion can promote heterogeneity through the 
classic Turing mechanism (Turing, 1952).

Furthermore, we see from Fig. 3 that increasing f has an identical effect to increasing k on the pro
portion of the pattern contained within the scale of the interaction range, and therefore has the same 
effect on stability, provided nonlocal transport dominates over diffusion and proliferation-death kinet
ics. This is consistent with how the nonlocal interaction term in the dispersion relation is a function of 
the product kf and how, when nonlocal transport dominates, the final pattern wavelength is directly 
proportional to f.

All of the above conclusions are also predicted by the dispersion relation. In fact, the integral in 
Eq. (30) is essentially the 1D hyperspherical Hankel transform. However, this physical interpretation 
also allows us to more intuitively see why stability changes in higher dimensions.

5.2 Higher dimensions

To extend this argument to 2D, consider the induced fluxes in the x direction on point p in Fig. 3(d), (e). 
In (d), there are many more cells in the semicircle to the right of p than in the semicircle to the left. 
Therefore this scenario, in which f is small, is similar to the 1D case: attractive interactions will move 
cells at p from lower density to higher density, thereby promoting pattern formation. Conversely, re
pulsive interactions will move cells at p from higher density to lower density, inhibiting any pattern 
formation.

However, as f increases it becomes important to consider a fundamental difference between 2D and 
1D: the induced fluxes are not all parallel but instead point at different angles.

For the f used in Fig. 3(e), the difference between the number of cells on the left versus the right of 
p is fairly small, and so although there are still more cells to the right, the effect of the induced fluxes 
pointing at different angles is sufficient to ensure that the total flux induced by cells from the left is 
larger than by cells from the right. This is because, as illustrated by the arrows in Fig. 3(e), fluxes in
duced by cells that are further away horizontally from p have larger horizontal components (compared 
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to their magnitude) than fluxes induced by closer cells. This angular effect can reverse the previous re
sults such that patterns can be, instead, dissipated by attractive interactions and promoted by repulsive 
interactions.

From Fig. 3(d), (e) we see that, as % is increased, the reversal of flux described above first occurs 
when % is approximately large enough to reach a second peak, i.e. when the pattern wavelength is 
approximately equal to %. Hence, the wavelength of patterns generated by repulsive interactions is ap
proximately %. In contrast, attractive interactions maximally reinforce pattern formation when % is only 
large enough to include the first peak, implying that patterns will have a wavelength of approximately 
2%. This is indeed what we find from the dispersion relation with the O1 kernel.

We can extend the same logic and conclusions to decaying interaction kernels with infinite range 
(i.e. without compact support) by considering % as a scale length instead of a cut off. Decaying kernels 
correspond to cells that are further away from each other having weaker interactions. If this decay is 
sufficiently fast, it can dominate the effect of changing angle with distance, thereby prohibiting any 
pattern formation with repulsive interactions. This is predicted in Section 4.3 through the statement 

1-N
that any kernel decaying faster than s 2 cannot support pattern formation with repulsive interactions.

In general, the angular effect described here is present in all dimensions higher than 1, implying 
that patterning with repulsive interactions is possible for all N > 1. The exact form and extent of this 
angular effect will also differ with dimensions, i.e. the sum of induced fluxes from within a sphere on a 
3D domain will not behave identically to the above 2D example. All of this information is fully captured 
in the dispersion relation through the integral kernel, sN-1 j1(N) (ks).

6 Numerical Validation of Instability & Exploration Beyond Instability

6.1 Numerical Methods

6.1.1 Numerical Integration Scheme

To validate our dispersion relation and explore pattern forming behaviour beyond linear instability, 
we numerically integrate the full integro-PDE (Eq. (3)) in 2D. As in Painter et al. (2015) we choose 
logistic growth for the proliferation-death kinetics, h(u) = pu(1 — U), and a linear packing function, 
p(u) = 1 - u, which restricts U < 1. We assume that the induced flux increases linearly with cell density, 
g(u) = u. As such, we integrate

L L
= V2u + pu(1 — u) — V • u 

dt U \

L L / \
(1 — u ) Pl S ^ G)u (

% 2 -/ 2 \b /
x+ s, t) dsx dsy . (31)

As a proxy for an infinite domain we choose a square domain, [0, L]2, with periodic boundary condi
tions, as these are less restrictive on the possible allowed wavemodes than Neumann or Dirichlet con
ditions, and thus minimise any effects of the boundary on the final pattern. Painter et al. (2015) make 
the same choice, so this also allows for a more direct comparison. For initial conditions, we choose the 
homogeneous state u = U with a perturbation of Gaussian white noise with zero mean and standard 
deviation 10—3. This choice of perturbation ensures every possible wavemode is excited.

We use the method-of-lines, first discretising in space and then integrating the resulting ODEs with 
backwards differentiation formulae. The latter is implemented through the integrate.solve_ivp func
tion from Python’s SciPy library (Virtanen et al., 2020). For errors in the integration over time, we choose 
10—11 for both the relative and absolute tolerances. For the spatial discretisation, we use 100 x 100 mesh 
points, having verified that this captures the same behaviour as with any further increases in preci
sion. Notably, the nonlocal term in Eq. (31) is equivalent to a convolution between s Q Q J and u (x), 

and so we efficiently compute this using fast Fourier transform methods with the convolution theorem. 
The diffusion term is discretised using the standard centred 5-point stencil. All code and associated 
documentation can be found at the repository (Jewell, 2023).

6.1.2 Estimating the Dispersion Relation from Simulation

In order to test the dispersion relation, we use a method of computing the growth rate Ak of a particular 
spatial mode k directly from the simulation. This is achieved by decomposing the density u( x, t) during
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n (j) =
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0, s > j

- n k[j0 (kj) - kj Rkj j0 (p) dp]

1 - s
917 e j2 n

1 kj3
2n (1+ k2 j2)3/2

. 113/2 j exP ( 2 ( j )) 
kj3exP ( 2k2 j2)

T1 1 1 -i T1 1 1 1 • .1 • . .’1 1 / S I 1 .1 .• C' . 1 / . 1 1\Table 1: Table showing the O1-O3 interaction kernels, Q I j L and their respective first order (standard)
Hankel transforms, H1 (k; j).

the linear regime (i.e. at early time) into modes as

u (x, t ) = £ Mk (t) eik • x, 
k

where Mk (t) is the amplitude of each spatial mode k, and thus evolves as

Mk (t) = Mk (0) eA t,

while in the linear regime. We can rearrange this to give

(32)

(33)

(34)

which can be calculated directly from simulation - each Mk (t), including Mk (0), is calculated through 
a discrete Fourier transform of the spatially discretised u(x, t) at each time step.

In practise, we choose the time t = 10-6 for this calculation to ensure the amplitude of the pertur
bation is still small and the dynamics are approximately linear. We have verified that the specific choice 
of t does not affect the results as long as it is sufficiently small (any t < 0.01 is sufficient for any of the 
sets of parameters used in this paper, and ensures the simulation is in the linear regime).

6.1.3 Example Interaction Kernels

For consistency with Painter et al. (2015), we use the same three examples of nonlocal interaction ker
nels; these are displayed in Table 1. The O1 kernel is the ‘top-hat’ function, representing uniform sig
nalling within a given area and zero signalling outside that area. The O2 kernel is the exponential decay 
function, representing a rapid decrease in interaction rate with increasing distance from the cell. Finally, 
the O3 kernel, unlike the other functions, is not monotonic and instead has a maximum at a distance 
j from the cell and a smooth drop off to zero interaction at shorter or further distances. A kernel with 
this form was also used in the animal swarming model of Mogilner and Edelstein-Keshet (1999). Each 
kernel is appropriately normalised for the 2D case, according to Eq. (2).

Specialising from Eq. (19), the dispersion relation in 2D with our chosen p(u), h(u), and g(u) is given 
by

A(k) = -k2 - p + 2nU(1 - U)^j2H1 (k;j), (35)

where H 1(k; j) is the first order canonical Hankel transform of the interaction kernel. This transform 
for each example kernel is shown in Table 1. Out of these example kernels, only the O1 kernel has a 
transform that can take negative values, and so only this kernel can support pattern formation with 
repulsive interactions.

6.2 Simulation Results

6.2.1 Steady State Patterns

Figs. 4 and 5 show typical examples of the patterns generated by the model in 2D. In all cases, we see 
that the dispersion relation derived from the linear stability analysis is reproduced in the simulations 
and accurately predicts the conditions for pattern formation. Most notably, pattern formation is indeed 
possible with repulsive interactions, as demonstrated in Fig. 5.
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Fig. 4: Simulation results for the 2D model, Eq. (31), with attractive interactions and relatively low pro
liferation, for each example interaction kernel. (a), (c), (e) heatmaps of the final cell density u at steady 
state for a single simulation. (b), (d), (f) the corresponding dispersion relations, with the analytical pre
diction (blue line) from Eq. (35) compared with estimates from the simulation (red dots) calculated 
using Eq. (34) for each spatial mode k supported on the finite domain. (a), (b) uses the O1 kernel; (c), 
(d) uses the O2 kernel; (e), (f) uses the O3 kernel. All simulations ran to t = 40 and used parameters: 
U = 0.5, ^ = 50, p = 1, £ = 0.4, L = 8.
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Fig. 5: Simulation results for the 2D model, Eq. (31), with repulsive interactions with the O1 kernel, for 
a range of proliferation rates. (a), (c), (e) heatmaps of the final cell density u at steady state for a single 
simulation. (b), (d), (f) the corresponding dispersion relations, with the analytical prediction (blue line) 
from Eq. (35) compared with estimates from the simulation (red dots) calculated using Eq. (34) for each 
spatial mode k supported on the finite domain. The proliferation-death rates are (a), (b) p = 1; (c), (d) 
p = 30; (e), (f) p = 300. All simulations ran to t = 100 and used parameters: U = 0.5, p = -5000, g = 1, 
L = 2.5.
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Fig. 6: Cell density heatmaps at subsequent times from a simulation with (a)-(d) repulsive interactions, 
and (e)-(h) attractive interactions. For the repulsive case, perturbations about the homogeneous steady 
state initially grow into a stripe pattern. The stripes then reduce in width, and can then collapse into 
perforated stripes. For the attractive case, perturbations initially grow into a labyrinthine pattern, which 
then collapses into spots. Spots which are close together then coalesce, leaving a state with fewer spots. 
Parameters for (a)-(d) are the same as in Fig. 5(a),(b), and for (e)-(h) are the same as in Fig. 4(c),(d).

We find that repulsive interactions lead to apparent steady states of stripes or perforated stripes. To 
corroborate that the perforated stripes in Fig. 5a are an effective steady state, we carried out simulations 
to t = 100, where we found that | upt) | < 2 x 10-10 at every spatial point. For other parameter choices, 
we also observe perforated stripes that collapse to form a regular lattice of symmetric spots - this is dis
tinct from the spot patterns formed by attractive interactions, such as in Fig. 4, which do not necessarily 
have a regular repeated structure. For repulsive interactions with relatively high proliferation-death 
rates, such as in Fig. 5(c),(e), we observe that stripes no longer necessarily have equal width, and per
pendicular stripes can stably coexist.

In contrast, for attractive interactions, stripes only appear to be stable for parameters in which the 
density supported by proliferation is close to the maximum density allowed by packing, i.e. when 
U . 1. Otherwise, the attraction causes any initial stripes or labyrinthine patterns to collapse into 
spots, as demonstrated in Fig.6(e)-(h). Over a longer timescale, these spots can merge, leaving a coarser 
pattern than the initial instability predicted by linear theory. Repulsive interactions, in contrast, appear 
to not enable this merging and coarsening phenomenon, as shown in Fig.6(a)-(d).

In general, we observe that repulsive interactions support shorter wavelength patterns than attrac
tive interactions, for a given signalling range, £. This is partly caused by the nonlinear merging effect 
described above, but it is also true at the level of linear stability. Attractive interactions allow instabil
ities with smaller k than repulsive interactions, as explained in Section 4.3. From Eq. (35), we see that 
the fastest growing wavemode occurs approximately at the first maximum of k H1(k; £) for attractive 
interactions and its first minimum for repulsive interactions. For the O1 kernel in particular, these are 
approximately k « 1.05n£ and k « 2.21 n£, respectively. As such, we might expect patterns to have 
a wavelength of approximately 2£ for attractive interactions and £ for repulsive interactions. This is 
consistent with the simulations in Figs. 4a and 5.

Figs. 4 and 5 are examples of dynamics that appear to have reached long time steady states. How
ever, for other parameter choices, this model also supports spatio-temporal patterns.

6.2.2 Spatio-Temporal Patterns

Whilst we do not observe any evolving spatio-temporal patterning with repulsive interactions, we do 
observe it for the specific case of attractive interactions with high proliferation. Fig. 7 shows two such
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Fig. 7: Examples of spatio-temporal patterning in the 2D model, Eq. (31) with attractive interactions and 
high proliferation. Each row of subfigures shows results for a different set of parameters. Within each 
row, each subfigure shows a heatmap of the cell density u at a subsequent point in time. The top row 
simulation has lower proliferation, p = 10, than the bottom row simulation, p = 20. Both simulations 
use parameters: O2 kernel, U = 0.5, p = 150, £ = 0.3, L = 5. Animations of both simulations can be 
found at the repository (Jewell, 2023).

examples; we have confirmed numerically that this behaviour is qualitatively similar for all three ex
ample interaction kernels. As both the analytical and numerical results agree that linear growth rates 
A are purely real, these spatio-temporal patterns must be a fundamentally nonlinear effect. This is con
sistent with the fact that such behaviour in the simulation occurs at times significantly after the initial 
instability of the homogeneous state.

The mechanism of formation for these patterns is the same as that identified by Painter et al. (2015) 
for the 1D case: when the proliferation rate is high, new aggregates will form inside any regions of low 
density, and then attract and coalesce with existing aggregates, thereby moving and leaving behind new 
regions of low density in which new aggregates form, continuing the dynamics indefinitely. A similar 
‘emerging and merging’ mechanism was previously shown to drive spatio-temporal patterning in local 
Keller-Segel chemotaxis models in 1D (Painter and Hillen, 2011).

In 2D, we can further categorise these spatio-temporal dynamics into two qualitatively distinct 
types. The first, shown in Fig. 7(a)-(d), features spontaneously forming spots that coalesce, forming 
new spots. The second, shown in Fig. 7(e)-(h), occurs with an even higher proliferation rate such that 
aggregates do not have time to fully coalesce into distinct spots before they are pulled towards and 
connected with new aggregates. The resulting dynamics then feature temporal labyrinthine patterns 
that constantly move, connect, and break apart. Notably, both of these patterns, as well as that shown in 
Fig. 8, bear a striking resemblance to the spatio-temporal patterns generated by local chemotaxis models 
in 2D, as seen in Aida et al. (2006) and in our own simulations of Kegel-Segel dynamics.

6.2.3 Multi-stability

Further increases in the proliferation rate, p, eventually lead to a stable homogeneous steady state, as 
seen from Eq. (35). Physically, this corresponds to cells that proliferate and die at such a high rate that 
all regions on the domain rapidly return to the carrying capacity density, U, regardless of transport ef
fects. However, from simulations such as in Fig. 8, we observe some parameter regimes in which large, 
nonlinear, perturbations may lead to a stable evolving pattern, even when the positive homogeneous 
steady state is linearly stable. Once again, the character of this pattern can be seen as a continuation of 
the evolving labyrinthine type (7(e)-(h)) where the proliferation is now even higher, causing all aggre
gates to be connected, creating an evolving structure of low density holes.
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Fig. 8: Example of multi-stability in the 2D system. For a fixed set of parameters with attractive inter
actions and high proliferation: (a), the dispersion relation showing that all modes linearly decay to the 
homogeneous state; (b), the heatmap of cell density for a simulation which uses a small perturbation 
and hence converges to the spatially homogeneous steady state; (c), the heatmap of a large perturbation 
of cell density used as an initial condition for a simulation; (d)-(f) heatmaps of cell density at subsequent 
points in time after the large perturbation. Parameters: O2 kernel, U = 0.5, p = 150, p = 35, g = 0.3, 
L = 5. An animation can be found at the repository (Jewell, 2023).

We have observed these multi-stable regimes for systems with attractive interactions and a suffi
ciently high proliferation rate for linear stability of the homogeneous state, but not so high as to induce 
a single stable homogeneous steady state. Such multi-stability is indicative of subcriticality in the Tur
ing bifurcation, as observed in a similar nonlocal advection-diffusion model in Giunta et al. (2023), who 
use weakly nonlinear analysis to investigate the criticality of the Turing bifurcation.

6.2.4 Summary

In this section we have numerically verified the predictions of the linear stability analysis for our single 
species model in 2D, including the fact that repulsive nonlocal interactions can form patterns, which 
was observed to not be possible in 1D by Painter et al. (2015). We find that the wavelengths of patterns 
produced by repulsive interactions are generally shorter than those of attractive interactions. The re
sulting shapes are also more ordered, with stripes or spots in a regularly repeating structure, and no ob
served spatio-temporal behaviour. In contrast, attractive interactions with high proliferation can drive 
spatio-temporal patterning, which can also be multi-stable alongside the homogeneous steady state, 
suggesting subcriticality of the Turing bifurcation. While the above conclusions apply to our model 
with a single cell species, many developmental processes in biology, such as zebrafish stripe formation, 
are driven by the interactions of at least two different species of cell.

7 Two Species

Having examined the single species system, we now extend to two species, showing how the linear 
stability analysis is easily adapted from the single species case, and how there are some fundamental 
differences in pattern formation going from 1D to higher dimensions.

In the two species model, nonlocal homotypic interactions can occur between members of the same 
species and nonlocal heterotypic interactions can occur between members of different species. Painter 
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et al. (2015) showed that certain combinations of attractive and repulsive homotypic and heterotypic 
interactions do not permit pattern formation in the 1D case. Here we show that, in higher spatial di
mensions, any combination can lead to pattern formation.

Noting that kinetics can be readily incorporated in the framework, for definiteness, we immediately 
specialise to the transport-only case, with no proliferation and death kinetics. Thus, the time evolution 
of the population densities for two types of cell in this model, u(x, t) and v(x, t) is governed by the 
non-dimensional equations

du(x, t) 2 V7 I / i puu [ ~rS s s \ ll । (lU N--- = V2 U - V- upu ( U, V) s Q uu — guu ( U (X + s, t)) d SN 
dt \ UNu RNN \<uuuj

+ W LN§ nuv (-is^guv (v(x + s, t)) dSN 

u uv R N u uv

dv (x, t) 

dt
= DV2v - V- (pp((u, v) ^VV I s Qvv(-^-}gvv(v(x + s, t)) dsN 

u vNv RN u vv

(36)

. pvu f
+ txt I ^v n vu 

u vNu RN
Xs- ) gvu(u(x + s,t)) dsN ), 
uvu 

where D is the relative diffusion coefficient. Each nonlocal interaction between a species and itself or 
another species has its own interaction strength pab, signalling range Uab, interaction kernel Qab, and 
source function gab, where a, b e { u, v}. Additionally, each species can have its own packing function 
pa(u, v), where a e {u, v}.

7.1 Linear Stability Analysis

The linear stability analysis of Eq. (36) simply follows from the single species case, in that the nonlocal 
term becomes a hyperspherical Hankel transform of the interaction kernel in the dispersion relation. 
We linearise about some homogeneous steady state (U, V) such that u (x, t) = U + u (x, t) and v (x, t) = 
V + v(x, t), where (U, V) are dictated by the initial conditions. The dispersion relation is then given by

A2 + C (k) A + D( k ) = 0, (37)

where

C(k) = k2(1 + D) - k(Auu + Avv)

D(k) = Dk4 - k3(DAuu + Avv) + k2(AuuAvv - AuvAvu)

in which each Aab is the nonlocal term for each interaction and given by

„ N -A
A _ 2 n 2 4„ (IT dgab\ Pab ^A

Aab = VNn\ APa(U,V) db \bUN J) dsQabr I y I ^ab

N-1 j1(N)(ks), (39)

where a, b e {u, v} with corresponding homogeneous states A, B e{U,V}. 
Eq. (37) is solved to give

. -C(k) ± pc(k)2 - 4D(k)
A _L = -----------------------------------

(38)

(40)

Similarly to the single species case, this dispersion relation takes the same form in the ND case as in 
the 1D case derived in Painter et al. (2015), but with hyperspherical Hankel transforms instead of just 
the Fourier sine transform.

Pattern formation requires Re(A+ ) > 0 for some k > 0, which occurs if and only if C (k) < 0
or D(k) < 0, for some k > 0. Painter et al. (2015) show that this can happen in 1D (assuming all
Pa ( U, V) M

B
> 0) for all combinations of attractive/repulsive interactions, except for repulsive-

repulsive homotypic and attractive-repulsive heterotypic interactions. This exception corresponds to 
puu, pvv < 0 and puv < 0, pvu > 0 (or puv > 0, pvu < 0).
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Fig. 9: Simulation results for the 2D two species model, Eq. (36), with repulsive-repulsive homotypic and 
attractive-repulsive heterotypic interactions. (b)-(f) heatmaps of the cell density u at subsequent times, 
illustrating the periodic oscillatory behaviour. Note that this shows half a period of oscillation, as the 
maxima and minima in (b) and (f) are swapped; after the second half period, the pattern returns to (b). 
v (not shown) similarly oscillates, but one quarter period behind u; for example, when u looks like (f), v 
looks like (d). (a) the dispersion relation (solid line), which has one region of instability corresponding 
to the negative region of C(k) (dashed line). Parameters: U = 0.25, V = 0.25, D = 1, ^uu = -2000, 
Vuv = -1000, ^vu = 1000, ^vv = -2000, ?uu = 0.75, £uv = 1, ^vu = 1, ^w = 0.75, L = 2.5. An animation 
can be found at the repository (Jewell, 2023)

Their conclusion relies on the fact that the integral transforms of the interaction kernels are always 
positive in 1D (for non-increasing kernels). However, in 2D and above, this is no longer the case. Instead, 
these integral transforms can be negative and so pattern formation can occur for all combinations of 
interactions. This is the same mechanism by which pattern formation in single species systems occurs 
for repulsive interactions only in 2D or above.

It is perhaps unsurprising that patterning can be driven by repulsive-repulsive homotypic interac
tions, given that we have shown that repulsive interactions for an isolated single species can lead to pat
terns. More notable is that attractive-repulsive heterotypic interactions, or equivalently run-and-chase 
dynamics, alone may drive pattern formation, contrary to results from Painter et al. (2015); Woolley 

et al. (2014); Woolley (2017). However, this does require the function Quv I I to be sufficiently differ

ent from Qvu I ^s-I such that one of their hyperspherical Hankel transforms is positive and the other is 
negative for some wavenumber. Biologically, this requirement is equivalent to some asymmetry in the 
cross-species signalling/sensing process.

7.2 Numerical Validation of Instability

To validate our predictions numerically we look at Eq. (36) in 2D, specifying the same packing and 
source functions as Painter et al. (2015): pu (u, v) = pv (u, v) = 1 - u - v, guu(u) = gvu(u) = u, gvv(v) = 

guv (v) = v. We also choose O1 kernels for all interaction kernels. The system is then integrated using 
the same numerical scheme as in Section 6.

Figs. 9, 10, and 11 show examples of numerical simulations of systems with repulsive-repulsive 
homotypic and/or attractive-repulsive heterotypic interactions. All example systems form patterns, 
confirming our predictions that pattern formation is possible with such interactions in 2D.
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Fig. 10: Simulation results for the 2D two species model, Eq. (36), with repulsive-repulsive homotypic 
and attractive-repulsive heterotypic interactions, with different parameter values to Fig. 9. Heatmaps 
for the final stable pattern for (a) u, and (b) v. (c) the dispersion relation (solid line), which has one region 
of instability corresponding to the negative region of D (k) (dashed line). Simulations ran to t = 20 and 
used parameters: U = 0.25, V = 0.25, D = 1, ^uu = -400, ^uv = -400, ^vu = 400, pvv = -400, tuu = 1, 
tuv = 1, tvu = 0.5, tvv = 1, L = 2.5.

k
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Fig. 11: Simulation results for the 2D two species model, Eq. (36), with attractive-repulsive heterotypic 
interactions and no homotypic interactions, i.e. run-and-chase dynamics. (a), shows heatmaps of u for 
the final stable pattern, whilst (b), shows the same for v. (c) shows the dispersion relation (solid line), 
which has one region of instability corresponding to the negative region of D (k) (dashed line). Simula
tions ran to t = 20 and used parameters: U = 0.25, V = 0.25, D = 1, ^uu = 0, ^uv = -1000, ^vu = 1000, 
Hvv = 0, tuv = 1, tvu = 0.5, L = 2.5.

In contrast to the single species system, with two species the linear growth rate A can be complex, 
as seen by Eq. (40). When A is complex and Re(A) > 0, the homogeneous state is destabilised into a 
temporally oscillating spatially heterogeneous pattern. This is sometimes referred to as a ’Turing-Hopf’ 
bifurcation (Ricard and Mischler, 2009) and sometimes as a ‘Turing-wave’ bifurcation (Ritchie et al., 
2022), or simply a ‘wave’ bifurcation (Villar-Sepulveda and Champneys, 2023). From Eq. (40) we see 
that such bifurcations occur when C(k) passes through zero from positive to negative with D(k) > 0, as 
in this case A+ will have a non-zero imaginary part and its real part will go from negative to positive. 
The model can exhibit such bifurcations in any number of spatial dimensions, with Fig. 9 showing a 2D 
example. Being a linear effect, this behaviour is distinct from the spatio-temporal patterns observed for 
the single species system.

Static patterns are also possible for the two species model, through the standard Turing bifurcation 
where Im(A+) = 0. From Eq. (40) we see that this bifurcation occurs when D(k) passes through zero 
from positive to negative: D(k) = 0 implies A+ = 0, and D(k) < 0 implies Re(A+) > 0 and Im(A+) = 0. 
Figs. 10 and 11 are examples of these static patterns. In particular, Fig. 11 demonstrates static stripe pat
terns that do not require any homotypic interactions and are formed purely through attractive-repulsive 
heterotypic interactions, i.e. through run-and-chase dynamics alone.
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8 Discussion

To gain a better understanding of how cells self-organise into the essential structures for biological de
velopment, it is crucial to identify the key factors that influence cell aggregation. This paper ’s primary 
objective has been to explore the influence of spatial dimension on pattern formation of cell aggregates 
within the nonlocal attraction and repulsion model proposed by Painter et al. (2015). In particular, does 
the inclusion of the full two or three spatial dimensions present in real biological systems significantly 
alter the conditions for pattern formation? To address this question, we employed a combination of lin
ear stability analysis in ND utilizing hyperspherical Bessel functions, along with numerical simulations 
in 2D for both the single species and two species models.

Our findings reveal a significant feature of this nonlocal model: in contrast to standard reaction
diffusion systems, its linear stability fundamentally changes with the number of spatial dimensions. 
Changing dimensionality thus not only affects the shapes of possible patterns, but changes the very 
capacity for pattern formation itself, as well as the capacity for linearised spatio-temporal dynamics. 
Our results underscore the importance of considering 2D and 3D cases when studying systems with 
nonlocal interactions, as simplistic 1D models may overlook essential behaviors in biological systems.

That said, we have shown that the dispersion relation derived in Painter et al. (2015) for 1D gen
eralises to a very similar form in ND, for both the single species and two species models. Essentially, 
the only change is the generalisation of the Fourier sine transform of the interaction kernel to a hy- 
perspherical Hankel transform. This consistency allowed us to show that patterning through a Turing 
bifurcation can occur for this model in any number of dimensions, given appropriate nonlocal interac
tion directions and strengths. For example, attractive interactions between a single species can always 
form patterns, given a sufficiently high interaction strength.

Additionally, for all N, we have illustrated the mathematical mechanism by which a system domi
nated by nonlocal transport produces a pattern with wavelength directly proportional to the signalling 
range. We have shown how the proportionality constant depends only on the dimensionality, the shape 
of the interaction kernel, and whether the interactions are attractive or repulsive. This insensitivity to 
changes in all other parameters is an essential trait for any mechanism in developmental biology, in 
which structures with precise size have to form in noisy environments.

However, as captured by the behaviour of hyperspherical Hankel transforms, there are some funda
mental differences in pattern formation in this model for different dimensions, and we have presented 
a physically intuitive argument for this in terms of the flux induced by nonlocal interactions pointing 
at different angles depending on the location of the source of the signal. An important example of such 
a difference is the ability for single species systems to form patterns driven by repulsive interactions, 
which is only possible in 2D or higher and hence not observed in Painter et al. (2015). Some developmen
tal processes do indeed feature a single species of cell that move apart when contact is made between 
cell protrusions, such as with fibroblast cells during neural crest development (Carmona-Fontaine et al., 
2008), although we are not claiming that this particular example is reflected perfectly in the model.

Linear theory predicts that patterns generated by repulsive interactions will have a shorter wave
length than those generated by attractive interactions. With the O1 kernel, the wavelength is approxi
mately equal to the signalling range in the repulsive case and twice that in the attractive case. In cellular 
systems, we might then expect the scale of patterning to be roughly the length of a filopodium for re
pulsive interactions and twice this length for attractive interactions.

Beyond linearity, our simulations show that attractive interactions can enable aggregates to merge, 
further coarsening the pattern, and potentially leaving aggregates unevenly spaced apart. Repulsive in
teractions, on the other hand, seemingly do not enable merging and will produce patterns with a regu
lar repeated structure. Additionally, we only observed spatio-temporal patterning in the attractive case. 
These spatio-temporal patterns are driven by proliferation and resemble those found in local chemo
taxis models, as previously identified by Painter et al. (2015) in 1D. Attractive systems can also feature 
multi-stability, with the possibility of stable evolving patterns even whilst the homogeneous state is 
linearly stable. Investigating such nonlinear behaviour analytically presents a promising direction for 
future work. In particular, weakly nonlinear analysis has been shown to be tractable for similar nonlocal 
models (Giunta et al., 2023). Such analysis could potentially provide more definite insight about which 
structures can form through attractive or repulsive interactions, as well as revealing whether the Turing 
bifurcation is supercritical or subcritical. Subcriticality would explain the observed multi-stability and 
could also have important biological implications, as it can enable robust high amplitude patterns to 
emergence from only small changes in the underlying system (Brena-Medina and Champneys, 2014).
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Another significant difference between the 1D and higher dimensional cases is the behaviour of 
the two species model with attractive-repulsive heterotypic interactions or run-and-chase dynamics. 
Yamanaka and Kondo (2014) proposed that such dynamics could underlie zebrafish stripe formation. 
Despite this, Painter et al. (2015) found from their analysis of the 1D case that run-and-chase alone 
cannot produce patterns, and this has been supported by studies of related models in 2D by Woolley 
et al. (2014) and Woolley (2017). Nevertheless, our work demonstrates that in 2D, which more accurately 
represents skin, the Painter et al. (2015) model actually predicts that such dynamics alone are sufficient 
to drive pattern formation.

However, this does require some asymmetry in the cross-species signalling ranges or interaction 
kernels. This could explain why Woolley et al. (2014) and Woolley (2017) do not predict such patterning 
- they implicitly assume symmetric signalling distributions. In fact, it is possible to see that the inclusion 
of asymmetric signalling would indeed enable the similar nonlocal model of Potts and Lewis (2019) to 
produce patterns with run-and-chase dynamics, where previously such patterning was not predicted 
from the restricted set of cases examined. In zebrafish, asymmetric signalling would correspond to the 
ratio of the response by xanthophores and the response by melanophores differing in their dependence 
on separation distance. In this case, ‘response’ could be measured as a magnitude of induced velocity 
or flux, or a probability to move, for example.

A significant caveat to the application of the Painter et al. (2015) model to zebrafish is that the model 
assumes that the nonlocal interaction induces flux parallel to the separation between cells. In contrast, 
zebrafish melanophores have been observed to move away from xanthophores on average in an anti
clockwise direction (Yamanaka and Kondo, 2014). Although we have demonstrated that run-and-chase 
dynamics can drive patterning in 2D (where it was previously shown to not be possible 1D), it is unclear 
whether this result extends to interactions that induce a cellular flux that is not parallel to separation. 
Incorporating anisotropy into the framework, to model flux induced at different angles, would thus be a 
valuable avenue for future work. Woolley (2017) has already shown that, in the limit of signalling range 
tending to zero, the choice of angle can heavily affect the capacity for patterns to form and the shapes 
that they take, which include patterns that are typically not seen in previous reaction-diffusion models. 
Anisotropy in a more generalised model could also be used to represent some bias of direction in the 
domain which, biologically, could correspond to directed fibres in an extracellular matrix, for example.

Another possible direction for future work is to consider the model on different geometries, which 
could be more biologically realistic and also could provide insight into the generality of our current 
results. In this work, we consider only an infinite domain or a finite domain with periodic boundary 
conditions. Curved manifolds, such as spheres or prolate ellipsoids, could thus be a natural extension 
as these shapes automatically feature such periodicity. Beyond periodicity, recent work (Eckardt et al., 
2020; Hillen and Buttenschon, 2020) has focused on formulating models like Eq. (3) on bounded do
mains with zero-flux and other boundary conditions, including in 2D (Ahn et al., 2021). These works 
largely focus on proving existence and well-posedness. To the best of our knowledge, investigation of 
pattern formation in these models through linear stability analysis has not yet been implemented.

In addition to providing biological and modelling insights, the analytical work in this paper has 
also demonstrated how hyperspherical Bessel functions with hyperspherical Hankel transforms can be 
powerful tools for the linear stability analysis of integro-partial-differential equations, in any number 
of dimensions. Our analysis can be directly applied to simplify the analysis of 2D and 3D models with 
equivalent nonlocal terms, such as in Villa et al. (2022). Furthermore, our analysis is easily adapted to 
nonlocal models that do not feature a radial vector s, including those with nonlocal advection such as 
Potts and Lewis (2019); Potts (2019); Murakawa and Togashi (2015), and those with nonlocal reaction
kinetics such as Britton (1989); Maruvka and Shnerb (2006); da Cunha et al. (2011); Piva et al. (2021). 
Extending the linear analysis of these models from 1D to ND will simply use hyperspherical Hankel 
transforms of order l = 0, instead of the order l = 1 used in our work. Integro-partial-differential
equations are also used in contexts without physical space, such as evolutionary models in ‘phenotype 
space’ (Chisholm et al., 2016; Diekmann et al., 2005; Alfaro et al., 2013), and hyperspherical Hankel 
transforms could potentially be useful for extending these to higher dimensions.

Finally, to close, we briefly discuss the importance of understanding the specifics of how nonlocal 
signalling varies with separation, for each biological or ecological application. Regarding the model de
fined by Eq. (3), we emphasise that the capacity for pattern formation is dependent on the behaviour

N-1 ~ / \
of the interaction kernel, and in particular, whether s 2 O I 11 increases over any region, as this dic
tates whether the hyperspherical Hankel transform can be negative. The behaviour of such interaction 
kernels depends on the given biological application, specifically the mechanism by which signals are 
transmitted. For example, we could construct a simplistic kernel for interactions caused by the exten
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sion of filopodia by assuming that the filopodium has equal probability of being any length (up to a 
limit) and then touches all points within the circle/sphere of this length with equal probability. In 2D 
a filopodium that extends to distance s might then sample any point on a circle of circumference 2 ns, 
and so the rate of interaction at a point at this distance should decrease by a factor 21s. Similarly in 3D, 
the choice of samples scales as the area of a sphere, 4 ns2, and the interaction rate should decrease by a 
factor of 4 Js2. In general, this ‘splattergun’ effect would correspond to a kernel that decays with a factor 

O (s 1-N). In this case, sN-Q (j) is never an increasing function, and so the hyperspherical Hankel 
transform cannot be negative, and so pattern formation cannot occur with repulsive interactions in a 
single species or run-and-chase dynamics with two species. However, the above example is only a very 
simplistic construction. Interaction kernels could equally also not decay in the above way, such as if 
the filopodia have higher probability of being a particular length, or if the filopodia could rotate at a 
faster timescale than they extend, or if signalling was due to some chemical released in all directions 
with activation only requiring a threshold concentration to be detected. In these cases, the model could 
plausibly predict pattern formation with repulsive interactions in a single species or run-and-chase dy
namics with two species. This illustrates how the predictions of pattern formation in the model are 
dependent on the specific details of the signalling mechanism.

Ultimately, we have shown in this work how pattern formation in a nonlocal reaction-diffusion- 
advection model is intrinsically dependent on the number of spatial dimensions, in a way which is not 
the case for local models. This motivates the need for future nonlocal models to reflect the dimension
ality of their subject system. However, we should also consider the biological detail of the interaction 
mechanism’s potentially complicated dependence on distance. Such details can only be properly un
derstood through experiment or observation for each specific biological application. This suggests that 
pattern formation modelling should not merely focus on complex reaction kinetics with simple diffu
sion, but also on the details of more complex transport dynamics.
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