1,371 research outputs found

    Orbital Dimer Model for Spin-Glass State in Y2_2Mo2_2O7_7

    Full text link
    The formation of a spin glass usually requires both structural disorder and frustrated magnetic interactions. Consequently, the origin of spin-glass behaviour in Y2_2Mo2_2O7_7 - in which magnetic Mo4+^{4+} ions occupy a frustrated pyrochlore lattice with minimal compositional disorder - has been a longstanding question. Here, we use neutron and X-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously-reported PDF, EXAFS and NMR studies and provides a new and physical mechanism for spin-glass formation. We show that Mo4+^{4+} ions displace according to a local "2-in/2-out" rule on each Mo4_4 tetrahedron, driven by orbital dimerisation of Jahn-Teller active Mo4+^{4+} ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O2^{2-} displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.Comment: 6 pages, 3 figure

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Peripheral brain-derived neurotrophic factor contributes to chronic osteoarthritis joint pain

    Get PDF
    Brain-derived neurotrophic factor (BDNF) and the high-affinity receptor tropomyosin receptor kinase B (TrkB) have important roles in neuronal survival and in spinal sensitization mechanisms associated with chronic pain. Recent clinical evidence also supports a peripheral role of BDNF in osteoarthritis (OA), with synovial expression of TrkB associated with higher OA pain. The aim of this study was to use clinical samples and animal models to explore the potential contribution of knee joint BDNF/TrkB signalling to chronic OA pain. Brain-derived neurotrophic factor and TrkB mRNA and protein were present in knee synovia from OA patients (16 women, 14 men, median age 67 years [interquartile range: 61-73]). There was a significant positive correlation between mRNA expression of NTRK2 (TrkB) and the proinflammatory chemokine fractalkine in the OA synovia. Using the surgical medial meniscal transection (MNX) model and the chemical monosodium iodoacetate (MIA) model of OA pain in male rats, the effects of peripheral BDNF injection, vs sequestering endogenous BDNF with TrkB-Fc chimera, on established pain behaviour were determined. Intra-articular injection of BDNF augmented established OA pain behaviour in MIA rats, but had no effect in controls. Intra-articular injection of the TrkB-Fc chimera acutely reversed pain behaviour to a similar extent in both models of OA pain (weight-bearing asymmetry MIA: -11 ± 4%, MNX: -12 ± 4%), compared to vehicle treatment. Our data suggesting a contribution of peripheral knee joint BDNF/TrkB signalling in the maintenance of chronic OA joint pain support further investigation of the therapeutic potential of this target

    The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical studies of osteoarthritis (OA) suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA) model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia) was assessed. Spinal cord microglia (Iba1 staining) and astrocyte (GFAP immunofluorescence) activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed.</p> <p>Results</p> <p>Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p < 0.05, compared to contralateral levels and compared to saline controls). Levels of activated microglia were significantly elevated at day 14 and 21 post MIA-injection. At day 28, microglia activation was significantly correlated with distal allodynia (p < 0.05). Ipsilateral spinal GFAP immunofluorescence was significantly (p < 0.01) increased at day 28, but not at earlier timepoints, in the MIA model, compared to saline controls. Repeated oral dosing (days 14-20) with nimesulide attenuated pain behaviour and the activation of microglia in the ipsilateral spinal cord at day 21. This dosing regimen also significantly attenuated distal allodynia (p < 0.001) and numbers of activated microglia (p < 0.05) and GFAP immunofluorescence (p < 0.001) one week later in MIA-treated rats, compared to vehicle-treated rats. Repeated administration of minocycline also significantly attenuated pain behaviour and reduced the number of activated microglia and decreased GFAP immunofluorescence in ipsilateral spinal cord of MIA treated rats.</p> <p>Conclusions</p> <p>Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.</p

    Nucleation and Growth of the Superconducting Phase in the Presence of a Current

    Full text link
    We study the localized stationary solutions of the one-dimensional time-dependent Ginzburg-Landau equations in the presence of a current. These threshold perturbations separate undercritical perturbations which return to the normal phase from overcritical perturbations which lead to the superconducting phase. Careful numerical work in the small-current limit shows that the amplitude of these solutions is exponentially small in the current; we provide an approximate analysis which captures this behavior. As the current is increased toward the stall current J*, the width of these solutions diverges resulting in widely separated normal-superconducting interfaces. We map out numerically the dependence of J* on u (a parameter characterizing the material) and use asymptotic analysis to derive the behaviors for large u (J* ~ u^-1/4) and small u (J -> J_c, the critical deparing current), which agree with the numerical work in these regimes. For currents other than J* the interface moves, and in this case we study the interface velocity as a function of u and J. We find that the velocities are bounded both as J -> 0 and as J -> J_c, contrary to previous claims.Comment: 13 pages, 10 figures, Revte

    Foraminal Ligaments Tether Upper Cervical Nerve Roots: A Potential Cause of Postoperative C5 Palsy.

    Get PDF
    Background Nerve root tethering upon dorsal spinal cord (SC) migration has been proposed as a potential mechanism for postoperative C5 palsy (C5P). To our knowledge, this is the first study to investigate this relationship by anatomically comparing C5-C6 nerve root translation before and after root untethering by cutting the cervical foraminal ligaments (FL). Objective The aim of this study is to determine if C5 root untethering through FL cutting results in increased root translation. Methods Six cadaveric dissections were performed. Nerve roots were exposed via C4-C6 corpectomies and supraclavicular brachial plexus exposure. Pins were inserted into the C5-C6 roots and adjacent foraminal tubercle. Translation was measured as the distance between pins after the SC was dorsally displaced 5 mm before and after FL cutting. Clinical feasibility of FL release was examined by comparing root translation between standard and extended (complete foraminal decompression) foraminotomies. Translation of root levels before and after FL cutting was compared by two-way repeated measures analysis of variance. Statistical significance was set at 0.05. Results Significantly more nerve root translation was observed if the FL was cut versus not-cut, p = 0.001; no difference was seen between levels, p = 0.33. Performing an extended cervical foraminotomy was technically feasible allowing complete FL release and root untethering, whereas a standard foraminotomy did not. Conclusion FL tether upper cervical nerve roots in their foramina; cutting these ligaments untethers the root and increases translation suggesting they could be harmful in the context of C5P. Further investigation is required examining the value of root untethering in the context of C5P

    Certified causes of death in patients with mesothelioma in South East England

    Get PDF
    Background: Mesothelioma is a highly fatal cancer that is caused by exposure to asbestos fibres. In many populations, the occurrence of mesothelioma is monitored with the use of mortality data from death certification. We examine certified causes of death of patients who have been diagnosed with mesothelioma, and assess the validity of death certification data as a proxy for mesothelioma incidence.Methods: We extracted mesothelioma registrations in the South East of England area between 2000 and 2004 from the Thames Cancer Registry database. We retained for analysis 2200 patients who had died at the time of analysis, after having excluded seven dead cases where the causes of death were not known to the cancer registry. The 2200 deaths were classified hierarchically to identify (1) mesothelioma deaths, (2) deaths certified as lung cancer deaths or (3) deaths from unspecified cancer, and (4) deaths from other causes.Results: 87% of the patients had mesothelioma mentioned on the death certificate. 6% had no mention of mesothelioma but included lung cancer as a cause of death. Another 6% had no mention of mesothelioma or lung cancer, but included an unspecified cancer as a cause of death. Lastly, 2% had other causes of death specified on the death certificate.Conclusion: This analysis suggests that official mortality data may underestimate the true occurrence of mesothelioma by around 10%

    Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time

    Get PDF
    Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of “biologically basic to socially specific” information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four

    Geriatric assessment with management in cancer care: Current evidence and potential mechanisms for future research

    Get PDF
    Older adults with cancer represent a complex patient population. Geriatric assessment (GA) is recommended to evaluate the medical and supportive care needs of this group. “GA with management” is a term encompassing the resultant medical decisions and interventions implemented in response to vulnerabilities identified on GA. In older, non-cancer patients, GA with management has been shown to improve a variety of outcomes, such as reducing functional decline and health care utilization. However, the role of GA with management in the older adult with cancer is less well established. Rigorous clinical trials of GA with management are necessary to develop an evidence base and support its use in the routine oncology care of older adults. At the recent U-13 conference, “Design and Implementation of Intervention Studies to Improve or Maintain Quality of Survivorship in Older and/or Frail Adults with Cancer,” a session was dedicated to developing research priorities in GA with management. Here we summarize identified knowledge gaps in GA with management studies for older patients with cancer and propose areas for future research
    corecore