103 research outputs found

    Comparison and imputation-aided integration of five commercial platforms for targeted DNA methylome analysis

    Get PDF
    Targeted bisulfite sequencing (TBS) has become the method of choice for the cost-effective, targeted analysis of the human methylome at base-pair resolution. In this study, we benchmarked five commercially available TBS platforms-three hybridization capture-based (Agilent, Roche and Illumina) and two reduced-representation-based (Diagenode and NuGen)-across 11 samples. Two samples were also compared with whole-genome DNA methylation sequencing with the Illumina and Oxford Nanopore platforms. We assessed workflow complexity, on/off-target performance, coverage, accuracy and reproducibility. Although all platforms produced robust and reproducible data, major differences in the number and identity of the CpG sites covered make it difficult to compare datasets generated on different platforms. To overcome this limitation, we applied imputation and show that it improves interoperability from an average of 10.35% (0.8 million) to 97% (7.6 million) common CpG sites. Our study provides guidance on which TBS platform to use for different methylome features and offers an imputation-based harmonization solution that allows comparative, integrative analysis

    Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2

    Get PDF
    Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute myeloid leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS). For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hypermethylation phenotype, implicating altered epigenome dynamics in the aetiology of these cancers. Here we show that the IDH variants in CS are also associated with a hypermethylation phenotype and display increased production of the oncometabolite 2-hydroxyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors within the retinoic acid receptor activation pathway among the hypermethylated targets. By analysing sequence motifs surrounding hypermethylated sites across the four cancer types, and using chromatin immunoprecipitation and western blotting, we identify the transcription factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-specific mechanism for regulating DNA methylation

    Renal tumouroids: challenges of manufacturing 3D cultures from patient derived primary cells.

    Get PDF
    Recent advancements in 3D in vitro culture have allowed for the development of cancer tissue models which accurately recapitulate the tumour microenvironment. Consequently, there has been increased innovation in therapeutic drug screening. While organoid cultures show great potential, they are limited by the time scale of their growth in vitro and the dependence upon commercial matrices, such as Matrigel, which do not allow for manipulations of their composition or mechanical properties. Here, we show a straightforward approach for the isolation and culture of primary human renal carcinoma cells and matched non-affected kidney. This approach does not require any specific selection for cancer cells, and allows for their direct culture in amenable 3D collagen-based matrices, with the preservation of cancer cells as confirmed by NGS sequencing. This method allows for culture of patient-derived cancer cells in 3D microenvironment, which can be used for downstream experimentation such as investigation of cell-matrix interaction or drug screening. [Abstract copyright: © 2022. Crown.

    Renal tumouroids: challenges of manufacturing 3D cultures from patient derived primary cells

    Get PDF
    Recent advancements in 3D in vitro culture have allowed for the development of cancer tissue models which accurately recapitulate the tumour microenvironment. Consequently, there has been increased innovation in therapeutic drug screening. While organoid cultures show great potential, they are limited by the time scale of their growth in vitro and the dependence upon commercial matrices, such as Matrigel, which do not allow for manipulations of their composition or mechanical properties. Here, we show a straightforward approach for the isolation and culture of primary human renal carcinoma cells and matched non-affected kidney. This approach does not require any specific selection for cancer cells, and allows for their direct culture in amenable 3D collagen-based matrices, with the preservation of cancer cells as confirmed by NGS sequencing. This method allows for culture of patient-derived cancer cells in 3D microenvironment, which can be used for downstream experimentation such as investigation of cell-matrix interaction or drug screening

    Mixed-methods approach to exploring patients’ perspectives on the acceptability of a urinary biomarker test in replacing cystoscopy for bladder cancer surveillance

    Get PDF
    Objectives: To determine the minimal accepted sensitivity (MAS) of a urine biomarker that patients are willing to accept to replace cystoscopy and to assess qualitatively their views and reasons. Patients and Methods: Patients were part of a prospective multicentre observational study recruiting people with bladder cancer for a urine biomarker study (DETECT II; ClinicalTrials.gov: NCT02781428). A mixed-methods approach comprising (1) a questionnaire to assess patients' experience with cystoscopy and patients' preference for cystoscopy vs urinary biomarker, and (2) semi-structured interviews to understand patient views, choice and reasons for their preference. Results: A urine biomarker with an MAS of 90% would be accepted by 75.8% of patients. This was despite a high self-reported prevalence of haematuria (51.0%), dysuria/lower urinary tract symptoms (69.1%) and urinary tract infection requiring antibiotics (25.8%). There was no association between MAS with patient demographics, adverse events experienced, cancer characteristics or distance of patients' home to hospital. The qualitative analysis suggested that patients acknowledge that cystoscopy is invasive, embarrassing and associated with adverse events but are willing to tolerate the procedure because of its high sensitivity. Patients have confidence in cystoscopy and appreciate the visual diagnosis of cancer. Both low- and high-risk patients would consider a biomarker with a reported sensitivity similar to that of cystoscopy. Conclusion: Patients value the high sensitivity of cystoscopy despite the reported discomfort and adverse events experienced after it. The sensitivity of a urinary biomarker must be close to cystoscopy to gain patients' acceptance

    Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic haematopoietic cell transplantation

    Get PDF
    Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies. While this is an effective treatment, it can result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier that could be used in donor selection in HCT to reduce the incidence of aGVHD. The discovery cohort of the study consisted of 288 donors from a population receiving HLA-A, -B, -C and -DRB1 matched unrelated donor HCT with T cell replete peripheral blood stem cell grafts for treatment of acute leukaemia or myelodysplastic syndromes after myeloablative conditioning. Donors were selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD that survived at least 100 days post-HCT matched for sex, age, disease and GVHD prophylaxis. Genome-wide DNA methylation was assessed using the Infinium Methylation EPIC BeadChip (Illumina), measuring CpG methylation at >850,000 sites across the genome. Following quality control, pre-processing and exploratory analyses, we applied a machine learning algorithm (Random Forest) to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n=288) selected using the same criteria as the discovery cohort. Different attempts to validate the classifier using the independent validation cohort failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use

    Baseline Mutations and ctDNA Dynamics as Prognostic and Predictive Factors in ER-Positive/HER2-Negative Metastatic Breast Cancer Patients

    Get PDF
    Prognostic and predictive biomarkers to cyclin-dependent kinases 4 and 6 inhibitors are lacking. Circulating tumor DNA (ctDNA) can be used to profile these patients and dynamic changes in ctDNA could be an early predictor of treatment efficacy. Here, we conducted plasma ctDNA profiling in patients from the PEARL trial comparing palbociclib+fulvestrant versus capecitabine to investigate associations between baseline genomic landscape and on-treatment ctDNA dynamics with treatment efficacy.Correlative blood samples were collected at baseline [cycle 1-day 1 (C1D1)] and prior to treatment [cycle 1-day 15 (C1D15)]. Plasma ctDNA was sequenced with a custom error-corrected capture panel, with both univariate and multivariate Cox models used for treatment efficacy associations. A prespecified methodology measuring ctDNA changes in clonal mutations between C1D1 and C1D15 was used for the on-treatment ctDNA dynamic model.201 patients were profiled at baseline, with ctDNA detection associated with worse progression-free survival (PFS)/overall survival (OS). Detectable TP53 mutation showed worse PFS and OS in both treatment arms, even after restricting population to baseline ctDNA detection. ESR1 mutations were associated with worse OS overall, which was lost when restricting population to baseline ctDNA detection. PIK3CA mutations confer worse OS only to patients on the palbociclib+fulvestrant treatment arm. ctDNA dynamics analysis (n = 120) showed higher ctDNA suppression in the capecitabine arm. Patients without ctDNA suppression showed worse PFS in both treatment arms.We show impaired survival irrespective of endocrine or chemotherapy-based treatments for patients with hormone receptor-positive/HER2-negative metastatic breast cancer harboring plasma TP53 mutations. Early ctDNA suppression may provide treatment efficacy predictions. Further validation to fully demonstrate clinical utility of ctDNA dynamics is warranted

    Multi-domain quantitative recovery following Radical Cystectomy for patients within the iROC (Robot Assisted Radical Cystectomy with intracorporeal urinary diversion versus Open Radical Cystectomy) Randomised Controlled Trial: The first 30 patients

    Get PDF
    Many patients develop complications after radical cystectomy (RC) [1]. Reductions in morbidity have occurred through centralisation and technical improvements [2], and perhaps through robot-assisted RC (RARC). Whilst RARC is gaining popularity, there are concerns about oncological safety [3] and extracorporeal reconstruction [4], and randomised controlled trials (RCTs) find little difference [5]. We are conducting a prospective RCT comparing open RC and RARC with mandated intracorporeal reconstruction (Robot-assisted Radical Cystectomy with intracorporeal urinary diversion versus Open Radical Cystectomy [iROC] trial) [6]
    corecore