
1 
 

Performance comparison and in-silico harmonisation 

of commercial platforms for DNA methylome analysis 

by targeted bisulfite sequencing 

 

Miljana Tanić1,2, Ismail Moghul1, Simon Rodney1, Pawan Dhami1, Heli Vaikkinen 3, John 

Ambrose4, James Barrett1, Andrew Feber1,5,6, Stephan Beck1,* 

 

1 University College London, UCL Cancer Institute, London, WC1E 6BT, United Kingdom; 2 

Institute for Oncology and Radiology of Serbia, Experimental Oncology Department, Belgrade, 

11000, Serbia; 3 University College London, Genomics and Genome Engineering Translational 

Technology Platform, London, WC1E 6BT, United Kingdom; 4University College London, Bill 

Lyons Informatics Centre, London, WC1E 6BT, United Kingdom; 5 University College London, 

Division of Surgery and Interventional Science, London, W1W 7TS, UK; 6 Royal Marsden 

Hospital, Molecular Pathology, London, SM2 5NG 

 

Correspondence: Stephan Beck, UCL Cancer Institute, 72 Huntley Street, WC1E 6BT, United 

Kingdom, Tel: +44-20-7679-0964, email: s.beck@ucl.ac.uk  

  

mailto:s.beck@ucl.ac.uk


2 
 

Abstract 

DNA methylation is a key epigenetic modification in the regulation of cell fate and 

differentiation, and its analysis is gaining increasing importance in both basic and clinical 

research. Targeted Bisulfite Sequencing (TBS) has become the method of choice for the cost-

effective, targeted analysis of the human methylome at base-pair resolution. Here we 

benchmarked five commercially available TBS platforms, including three hybridization capture-

based (Agilent, Roche, and Illumina) and two RRBS-based (Diagenode and NuGen), across 11 

samples. A subset of these were also compared to whole-genome DNA methylation sequencing 

with the Illumina and Oxford Nanopore platforms.  We assessed performance with respect to 

workflow complexity, on/off-target performance, coverage, accuracy, and reproducibility. We 

find all platforms able to produce usable data but with major differences for some performance 

criteria, especially in the number and identity of the CpG sites covered, which affects the 

interoperability of datasets generated on these different platforms.  To overcome this limitation, 

we used imputation and show that it improves the interoperability from an average of 10.35% 

(0.8M CpG sites) to 97% (7.6M CpG sites). Our study provides cross-validated guidance on 

which TBS platform to use for different features of the methylome and offers an imputation-

based harmonization solution for improved interoperability between platforms, allowing 

comparative and integrative analysis. 
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Introduction 

DNA methylation is an indispensable epigenetic mark for many biological processes 

such as organismal development, cellular differentiation, and maintenance of cell-type-specific 

states1.  Interrogating the changes in DNA methylation patterns is essential to better understand 

the biology of normal and pathological states and to identify clinically relevant biomarkers. In the 

past decade methods for methylome analysis have moved away from semi-quantitative 

methods with coarse resolution (MeDIP, MRE-seq) towards methods with the single-base 

resolution based on bisulfite conversion such as microarrays and next-generation sequencing 

(NGS)2, 3. NGS offers several advantages, including single-molecule analysis and read phasing 

to study sample heterogeneity and epiallele composition4, 5. Whole-genome bisulfite sequencing 

(WGBS) remains the gold standard method for studying DNA methylation at a single base-pair 

resolution, although it is associated with high costs and requires substantial computational 

resources. Targeted bisulfite sequencing (TBS) directs the sequencing to more informative parts 

of the genome, reducing the costs of sequencing. The analysis of DNA methylome by TBS can 

be achieved either through target-specific enrichment of regions containing CpG sites of interest 

using probe hybridization capture methods (HC)6 or through non-specific enrichment of CpG-

dense regions by reduced-representation bisulfite sequencing (RRBS) mediated by a restriction 

enzyme recognition site containing a CG motif7. 

Currently, five commercial manufacturers are producing off-the-shelf kits, offering 

standardized reagents and conditions for genome-wide TBS using HC (Agilent SureSelect 

Methyl-seq, Roche NimbleGen SeqCap EpiGiant, and Illumina TruSeq Methyl Capture EPIC) or 

RRBS (Diagenode Premium RRBS and NuGen Ovation RRBS Methyl Seq). The five platforms 

employ different experimental strategies to generate sequencing libraries and differ in the scope 

of regions they cover. The diversity of these platforms’ characteristics, along with the absence of 

a thorough comparison8 of their output and performance, warrants a comprehensive 
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benchmarking to provide guidance for users to select the most appropriate platform based on 

each one’s strengths and limitations.   

Here, we systematically compare performance of these five platforms in terms of 

sequencing output, target capture efficiency, genomic features coverage, CpG coverage 

similarity, intra-platform reproducibility, between-platform concordance, and differential 

methylation, across a set of 11 samples. We benchmark each of the five TBS platforms to gold-

standard data generated using Illumina WGBS and Nanopore sequencing. Finally, we evaluate 

interoperability of the TBS platforms and provide guidance for their harmonization. 

Results 

DNA methylation data generation 

For each TBS platform a total of 16 libraries were generated (Figure 1a) using the same 

source DNA from 11 biological replicates that consisted of: reference gDNA isolated from 

human peripheral blood cells (Ref.gDNA) at two different DNA inputs (recommended by the 

manufacturer and 500 ng) in duplicate; Coriell NA12878 and Hela cell lines processed in 

duplicate; four DNA methylation standards generated from ZYMO fully methylated and 

unmethylated control samples; a pair of genetically and phenotypically divergent bladder cancer 

cell lines and a pair of isogenic bladder cancer cell lines with different sensitivity to cisplatin 

treatment, generating a total of 80 TBS libraries (Supplementary Table 1). The length and 

complexity of the library prep protocols vary considerably between the methods (Figure 1b). 

Libraries were sequenced on Illumina HiSeq2500 at 100bp PE to achieve an average of 30M 

uniquely mapped deduplicated read pairs, and data were processed using the same 

computational pipeline. Additionally, whole-genome DNA methylation data was generated using 

WGBS on Illumina sequencer (Ref.gDNA) and Oxford Nanopore platforms (Coriell NA12878).  
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Differences in platform design  

The five platforms differ in the methods used for DNA fragmentation, type of 

hybridization probes, the total size of the epigenome covered, the number of targeted CpGs, 

strand specificity, required DNA input, protocol complexity, total hands-on time, and time-to-

result, and finally the price per sample (Table 1). While HC platforms target specific regions of 

the genome by design, RRBS non-specifically enriches for CpG-dense sequences.  

To compare the overlap between the size of the regions covered by each platform, for 

the three HC platforms we used manufacturers’ design files and to determine the theoretical 

target regions for RRBS platforms we performed an in silico enzymatic digestion with size 

selection mimicking experimental and sequencing conditions. All platforms targeted in common 

only 9,260,583 bp, and 18,204,312 bp were shared by all HC platforms (Figure 1c). Agilent and 

Roche platforms commonly targeted additional 18,558,613 bp, while Illumina and in silico RRBS 

targeted the most platform-specific regions, 56,996,695 bp and 67,747,965 bp respectively. The 

size of target regions determines the amount of sequencing required but does not necessarily 

correlate with the number of enclosed CpG sites. The number of CpGs targeted by each 

platform ranged from 2.8 to 4 million CpGs. A total of 707,686 CpGs were commonly targeted 

by all platforms (Figure 1d). The three HC platforms commonly targeted another 727,257 

CpGs, and RRBS targeted the highest number of additional platform-specific CpGs (2,293,591). 

 

Sequencing output variability 

Cost-efficiency of sequencing depends on several factors including read-quality, 

mapping rates, duplication rates, and in case of hybridization capture methods, target capture 

efficiency. To simulate real-life biological experimental setup and to enable an unbiased 

comparison between platforms, equimolar amounts of each sample library were pooled together 

and sequenced to achieve an average of 30M of uniquely mapped deduplicated reads (UMDR). 
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To achieve the targeted number of UMDR, between ~55M reads (for NuGen) to over ~80M 

reads (for Illumina’s platform) had to be sequenced (Figure 2a). To determine the technical 

variability of sequencing output, we report the average number of reads and the standard 

deviation for each of the platforms tested (Supplementary Table 2). Due to reduced sequence 

diversity of bisulfite converted DNA, alignment rates are generally lower than for genome 

sequencing. Mapping rates for HC-based methods were comparable between platforms 

(Agilent: 76.5% ± 1.4%, Roche: 78.6% ± 3.9% and Illumina: 82.1% ± 1.8%) and higher than for 

RRBS-based platforms (Diagenode: 60.6% ± 1.4% and NuGen: 68.0 ± 3.4%) (Supplementary 

Figure 2).  Bisulfite conversion is a harsh chemical process that degrades DNA, reducing the 

library complexity and if combined with a high number of PCR cycles, may lead to a large 

number of duplicate reads skewing the methylation readout9, 10. Deduplication is required to 

determine precise CpG methylation levels and can be achieved by relying on fragment genomic 

coordinates11 (Agilent, Roche, and Illumina) or using unique molecular identifiers (UMIs)12 

(Nugen).  Duplication rates were the highest for Illumina’s platform (52.0% ± 16.4%) and the 

lowest for NuGen (7.0% ± 6.2%). Overall, the highest ratio of UMDR to passing-filter (PF) reads 

was observed for NuGen’s platform and the lowest for Illumina. 

Target capture efficiency  

Sequencing cost-effectiveness for HC methods also depends on the percentage of 

sequencing directed to regions of interest versus the amount of off-target sequencing. For this 

analysis, we omitted two RRBS-based platforms since their enrichment is not target-specific. To 

evaluate the performance of the wet-lab hybridization capture protocol for the three HC 

platforms (Agilent, Roche, and Illumina), on-target capture efficiency was compared based on 

coverage of all targeted bases according to manufacturers’ design files. Overall, on-target 

capture efficiency measured as the percentage of uniquely aligned PF bases that mapped on or 

near a bait, was highest for Illumina’s platform (90.6% ± 1%), followed by Agilent (78.2% ± 
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14.8%) and Roche (61.5% ± 18.2%) platforms, with the two latter platforms marked by high 

inter-sample variations (Figure 2c and Supplementary Table 3). Fold enrichment by which the 

baited region has been amplified above the genomic background was highest for Agilent (24.3 ± 

7.2), followed by Illumina (21.7 ± 0.4) and Roche (21.3 ± 6.9).  

Target coverage was assessed as a proxy for how well the data is likely to perform in 

downstream applications. Median target coverage was similar for all platforms, Illumina 31.5x ± 

12.5x, Roche 30.3x ± 14.5x, and Agilent 27.4x ± 7.2x. The uniformity of coverage of the target 

region was represented as the theoretical increase of non-zero read coverage necessary to 

raise 80% of bases to the mean coverage levels in those targets (fold-80 penalty), with lower 

values indicating less variability in target coverage. We observed higher uniformity of coverage 

for Roche and Illumina’s platforms (2.3 ± 0.1 and 2.4 ± 0.3, respectively), while Agilent had a 

fold-80 penalty score of 3.3 ± 0.2. The uniformity of coverage translates into the fraction of 

targeted regions being covered at a specific depth (Figure 2b). Intra-platform variability was 

pronounced for all three HC platforms, including technical replicates, with the average 

percentage of targets covered at 10x ranging from 80.9% ± 9.3% for Agilent’s platform to 88.1% 

± 11.7% for Illumina (Figure 2d). 

CpG coverage  

An important consideration when choosing a platform for methylome analysis is the 

number of CpG sites that it interrogates. The number of CpGs covered by RRBS is a function of 

the depth of sequencing and sequencing conditions (read length and single- or paired-end 

mode). While each 40 – 600 bp fragment generated by restriction enzyme MspI has a CpG site 

at its ends, the number of CpGs within each fragment is not uniform due to the random selection 

of recognition site by the enzyme. In contrast to HC methods, the number of CpGs covered is 

determined by the target region. However, we observed a much higher number of 

experimentally covered CpGs at 1x than expected by design for all three HC platforms, 
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consistent with high levels of off-target sequencing (Figure 3a).  The average number of CpG 

sites covered at least 5x drops to approximately 4 million CpGs for all platforms but remains 

higher for RRBS platforms at 10x and 30x compared to HC methods. Both RRBS platforms 

showed a similar number of CpGs covered at a specific depth, ranging from over 5 M CpGs 

covered at 1x, to ~2 M CpGs covered at 30x. Mean CpG coverage was higher for RRBS 

methods (Diagenode: 33 ± 10.6, NuGen: 31 ± 9.6) compared to HC methods (Agilent: 13 ± 6, 

Roche: 9.7 ± 4.1 and Illumina: 13.2 ± 3.6), reflecting a more uniform coverage for the former. 

Next, we wanted to determine the degree of CpG coverage similarity between and within 

platforms, in terms of the number of overlapping CpGs covered with a minimum of 10 reads. For 

each sample-platform, we calculated a pairwise Jaccard similarity index defined as the number 

of commonly interrogated CpG sites (intersection) over the total number of CpGs (union). 

Unsupervised hierarchical clustering separated samples into two main groups, RRBS-based 

and HC-capture-based, indicating that by large, they cover different CpG sites (Fig. 3b). All 

samples clustered according to the platform of origin, with Diagenode showing the highest 

degree of intra-platform similarity. As expected, NuGen and Diagenode RRBS platforms 

covered mostly the same CpG sites, while among HC methods, Agilent and Roche platforms 

had a higher degree of similarity compared to Illumina.  

Theoretical and empirical coverage of genomic features 

The CpG distribution is not uniform throughout the genome, thus, an important 

consideration for choosing a platform is the coverage of genomic features of interest.  HC 

platforms target CpG islands (CGI), shores and shelves, regulatory regions, and known DMRs 

to a different extent by design (Supplementary Figure 3). We compared the size of targeted 

genomic features and the number of CpGs targeted in each platform. The Illumina platform 

targets ~20 Mb more than other platforms including the highest portion of FANTOM5 defined 

enhancers (>40%) and insulator regions. Agilent’s platform targets the largest region and the 
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highest number of CpGs within CGI, in promoter end exon genic regions. Interestingly, although 

Illumina’s platform targets the largest portion of inter-CGI, intron, and heterochromatin regions, 

RRBS encompasses more CpGs in those regions. 

To determine how well each platform experimentally covers specific regions of the 

genome, we counted the number of CpGs with a minimum of 10 reads per platform in each 

genomic/regulatory feature (Figure 4a). In general, we observed a pronounced variation in the 

number of CpGs covered per sample by feature for all platforms except Diagenode. Striking 

differences in theoretical vs. empirical coverage were observed, especially for Agilent’s platform 

reflecting lower uniformity of coverage with many CpGs not reaching the 10x threshold. Overall, 

RRBS platforms covered the highest number of CpGs located in CGI and shores, while shelves 

and open-sea regions were best represented by Roche. Illumina interrogated over twice as 

many CpGs located in FANTOM5 enhancer regions compared to other platforms. Roche 

showed the highest coverage of promoters, exons, 5’ and 3’UTRs, while RRBS platforms 

targeted the most CpGs in introns. When looking at regulatory features defined by 

ChromHMM13 where promoters were stratified by their activity, HC methods covered more 

CpGs in active promoter regions, while RRBS methods had higher coverage of weak promoters. 

There were no significant differences between platforms in the coverage of either strong or 

weak enhancers, whereas Illumina covered the most CpGs located in insulator regions. 

Intra-platform reproducibility and inter-platform concordance 

To estimate the level of confidence in obtained results for any given biological 

experiment and to set appropriate cutoffs for calling differential DNA methylation, it is important 

to know the approximate level of technical variation in the data. To measure the contribution of 

technical variation and to assess platform reproducibility we compared DNA methylation data 

from samples for which the same DNA was used to generate duplicate sequencing libraries 

(Ref.gDNA, Coriell, and Hela). DNA methylation levels were calculated as the fraction of 
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methylated CpGs over the sum of methylated and unmethylated CpGs. We constricted the 

analysis to CpG sites covered at a minimum of 10x in both samples to calculate pairwise 

Pearson correlation coefficients. All platforms showed a very high overall correlation in DNA 

methylation levels of replicate samples, with Diagenode slightly underperforming (Figure 3d 

and Supplementary Figure 4b). The effect of DNA input between platforms was estimated 

using Ref.gDNA at different inputs for library prep. HC methods require ~10-fold higher amounts 

of DNA compared to RRBS. For HC methods, 1 μg of DNA (recommended for Agilent and 

Roche) was compared to 500 ng input (recommended for Illumina), while for RRBS methods 

recommended 100 ng input was compared to 500 ng (common to all platforms). All platforms, 

apart from Diagenode, showed very high intra- and inter-platform correlation in DNA methylation 

levels (>0.98) for different DNA inputs (Supplementary Figure 4a). 

Concordance between platforms for overall DNA methylation levels was compared on a 

set of DNA methylation standards generated by mixing DNA from fully unmethylated (ZYMO-

UM) and fully methylated controls (ZYMO-FM) at know ratios (0% ZYMO-FM, 5% ZYMO-FM, 

10% ZYMO-FM, 100% ZYMO-FM). ZYMO-UM control DNA is isolated from DNMT1 and 

DNMT3b knockout cell line known to have less than 5% methylated DNA14. All technologies 

appeared to slightly overestimate methylation levels for unmethylated control and to 

underestimate methylation levels of fully methylated control (Fig. 3c). Methylation levels for 

unmethylated control ranged from 5% estimated by NuGen to 10% estimated by Roche, while 

for the fully methylated control, levels ranged from 83% (Diagenode) to 97% (NuGen).  

We next looked at the between-platform concordance in methylation levels for common 

CpG sites for each sample in a pairwise fashion. The intersection of CpGs covered by all five 

methods was made to enable the direct comparison. Methylation levels per sample for each 

platform were compared to all others to calculate the average correlation over common CpGs 

(Figure 3e). Roche Hela-1 replicate was excluded from the analysis since the hybridization 

capture failed. The number of commonly covered CpGs in all samples ranged between 94,000 
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to 450,000 CpGs. We observed a high correlation in called methylation levels for all samples 

(R:0.85-0.99) except for DNAm-5pct, DNAm-10pct, and ZYMO fully methylated control 

(Supplementary Figure 4c). 

Imputation to improve selected CpG site concordance 

The platform similarity as a function of the number of overlapping CpG sites is of particular 

concern as downstream analyses regularly require subsetting to a set of CpG sites that are 

present in all datasets. Furthermore, the effect of low overlap in the CpG sites selected is further 

exacerbated as the number of samples/datasets increases. Thus, samples with duplicate 

sequencing libraries (Ref.gDNA and Coriell) were further analyzed to measure the effect on the 

concordance in the CpG sites selected across platforms. A total of 7.8M CpG sites were 

covered at 10x by the five platforms, of which only 9.85% (0.79M CpGs) are present in all five 

platforms.  

Imputation can be used to estimate the methylation value for each missing CpG site 15, 16 and 

thereby, can be used to help increase platform intra- and inter-operability. We used BoostMe16 

to impute the vast majority (i.e. 99.95%) of missing CpG sites, leveraging information learnt from 

neighboring CpG within 1000bp, of the same dataset.  The overlap between the five platforms 

increased almost tenfold (0.79M CpG sites to 7.6M CpG sites) (Figure 5c). However, it came at 

a cost of reduced DNA methylation concordance from an average Person correlation of 0.97 

before imputation (Supplementary Figure 6) to 0.80 after imputation (Supplementary Figures 

7). Mean absolute error (MAE) that estimates by how much each methylation value is off, 

increased from an average 0.05 to 0.14, while MAE corrected for the number of CpGs present 

in the dataset, decreased from an average of 0.12 to 0.002 (Supplementary Table 5). When a 

distance threshold of <25bp was applied to impute neighboring CpGs the total number of 

overlapping CpGs was 2.5 million (32% of the total), while the intraplatform concordance after 

imputation remained high (ρ=0.89 and MAE=0.10) (Supplementary Figure 8).   
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Calling differentially methylated sites and regions 

Ultimately, many studies aim to identify differentially methylated CpG sites (DMC) or 

differentially methylated regions (DMR) between samples. To assess the between-platform 

concordance for calling differential methylation, we compared two pairs of bladder cancer cell 

lines, one pair with a different genetic origin and diverse phenotypes (253J and T24) and a 

second pair of isogenic cell lines with divergent sensitivity to cisplatin (RT112 and RT112-CP). 

Given that the observed technical variability was as high as 5% for some platforms, we set the 

threshold to over 10% methylation difference and q-values less than 0.05 to call DMCs and 

DMRs as differentially methylated. Only a small subset of DMCs was commonly identified by all 

five platforms for both pairs of cell lines (Figure 4b). For the T24 vs. 253J cell pair, Agilent and 

NuGen platforms identified smaller sets of DMCs, of which many were unique with somewhat 

higher q-values. Surprisingly, with Agilent’s platform data we failed to call any significant DMCs, 

although the other four platforms shared most of the identified significant DMCs. As expected, 

the bulk of identified DMCs for all platforms showed higher methylation differences for the 

genetically distinct pair of cell lines compared to the isogenic pair. When comparing aggregated 

methylation levels over 1000 kb tiling windows to call DMRs, high concordance was observed 

between all five platforms for T24 vs. 253J cells, with NuGen identifying an additional subset of 

highly significant DMRs. Again, Agilent’s platform didn’t identify any of the DMRs called by the 

other four platforms for the RT112 vs. RT112-CP pair. Notably, methylation differences for 

significant DMRs were lower compared to methylation differences observed for DMCs.  

TBS comparison to WGBS and Nanopore methylome 

Whole-genome methods for DNA methylation analysis can theoretically capture all CpGs 

at single base-pair resolution. WGBS is considered the gold standard for near-complete 

characterization of DNA methylome, yet it is liable to bias induced by bisulfite treatment17. The 

sequencing of the native DNA molecule using third-generation sequencing technologies 
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platform allows for direct detection of modified bases but requires large sample inputs, and 

features relatively high error rates18, 19. Both approaches are costly in terms of computational 

and financial resources and therefore not suited for large sample cohorts. We compared TBS to 

whole methylome datasets. All datasets were filtered to exclude CpG sites with less than ten 

reads or with extremely high coverage (>3 sd). Ref.gDNA was sequenced by WGBS covering 

18,505,516 CpGs (25x). All TBS platforms showed high levels of concordance for all platforms 

(ρ>0.98) with Diagenode slightly underperforming (ρ=0.94). Coriell NA12878 was represented 

by two WGBS datasets and a Nanopore data: WGBS SE covering 24,074,147 CpGs at 28x 

mean coverage and WGBS PE with 25,093,057 CpGs at 53x, whilst Nanopore covered 

28,230,385 CpGs at mean 49x coverage. Correlation in methylation levels between WGBS SE 

and PE datasets was higher (ρ=0.95) than with Nanopore (ρ=0.91 and 0.93, respectively) 

(Supplementary Figure 5). All TBS platforms displayed a higher correlation to WGBS datasets 

than to Nanopore data, with Diagenode’s platform showing the lowest correlation, albeit with the 

highest CpG overlap. 

Discussion 

To answer important biological questions in the epigenetics of health and disease, we 

must understand the possibilities and limitations of the tools we use. Over the past decade, 

many studies harnessed the power of BS-seq methods to advance our knowledge on 

epigenetics of non-communicable diseases, to identify clinical biomarkers and understand 

normal development20-24.  Several companies offer off-the-shelf pre-designed products for 

targeted analysis of DNA methylation at the genome-wide level. We compared five commercial 

platforms (Agilent SureSelect Methyl-seq, Roche NimbleGen SeqCap EpiGiant, and Illumina 

TruSeq  Methyl Capture EPIC, Diagenode Premium RRBS, and Tecan NuGen Ovation RRBS 

Methyl Seq), and examined their performance, similarities and differences. To mimic a real-life 

experimental setup, for each platform, the same panel of 11 samples was processed generating 
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16 libraries including technical replicates, sequenced to a comparable number of usable reads, 

and analyzed using the same bioinformatics pipeline. 

The experiment protocol complexity, length and DNA input requirements often dictate 

the choice of the platform. Small-scale studies focused on in-vitro experiments using cell lines or 

animal models have fewer constraints compared to high-throughput applications using scarce 

clinical samples. NuGen offers the shortest and least complex protocol that requires only 100 ng 

of DNA. Among HC platforms, Illumina’s protocol can be completed in two days and requires 

half the amount of DNA by multiplexing four samples, albeit reducing the flexibility in 

experimental design. All platforms can be potentially automated with modifications of the 

bisulfite conversion step. The price per sample (for library prep only) for RRBS platforms is 

almost tenfold lower compared to HC platforms. 

Differences in design, size of the targeted region, and experimental strategies for library 

preparation and target capture translate into stark differences in the cost-effectiveness of 

sequencing. To achieve a similar number of uniquely mapped deduplicated reads, HC platforms 

required more sequencing than RRBS platforms. While all platforms perform adaptor tagging 

through ligation before the bisulfite conversion step, Agilent and Illumina perform hybridization 

capture before bisulfite conversion reaction whereas Roche platform performs target capture 

after bisulfite conversion.25  To distinguish between C>T SNP and C>U conversion it is 

necessary to read both strands for a given CpG site. In addition to RRBS platforms, only Roche 

HC platform targets both strands at the same ratio, while Illumina covers both strands only for 

common SNPs.  

Estimates of 5-methylcytosine (5mC) levels may be biased by experimental and 

bioinformatic factors. Although all platforms slightly underestimated global 5mC levels for fully 

methylated DNA standards, this was particularly pronounced for Diagenode’s platform. 

Similarly, between-platform concordance was lowered with increasing methylation level of 

ZYMO control samples.  Olova et al. found that the bisulfite conversion is the main driver of 
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sequencing biases that are further amplified by PCR amplification.17 Since the sample source 

and sequencing conditions were the same for all, the bias must have been introduced during the 

library preparation and/or data deduplication. Read duplication levels were highest for Illumina’s 

and lowest for NuGen’s platform. While HC platforms data processing included a deduplication 

step based on read coordinates, only NuGens’s platform incorporates UMIs enabling precise 

read deduplication to account for bias introduced by PCR amplification. In contrast, Diagenode’s 

platform doesn’t allow for read deduplication, rendering it susceptible to biased estimation of 

5mC levels.  Conversion efficiency was above 99% for all platforms except for Roche, where the 

rate was over 98%. Overconversion may lead to underestimation of 5mC levels; however, fully 

methylated spike-in was not included in all platforms so we could not compare the over-

conversion rates.  

The choice of method defines the space for the discovery of CpG loci or regions 

associated with a specific phenotype. Each of the platforms targeted different regions of the 

genome and the overlap between CpG loci covered by all was modest. Overall, RRBS methods 

covered more CpGs at 10x, but almost 40% of those CpGs fell into repetitive regions (data not 

shown), predominantly Alu elements, which were not targeted by HC platforms. We provide a 

breakdown of genomic feature coverage by platform that can be used as a guide for platform 

selection. A pronounced variation in the number of covered CpGs within each platform was 

observed warranting an imputation of missing data to fully capitalize on the dataset.   

To increase power for the discovery of novel biomarkers meta-analysis and integration of 

datasets generated using different platforms can be used. The interoperability of the platforms is 

dependent on the number of overlapping CpGs between platforms and their concordance. Our 

results reveal high between-platform concordance in measured 5mC levels of the overlapping 

CpG sites. We found that while many of the DMCs called by the five platforms did not overlap, 

the majority of DMRs were commonly identified by all platforms, suggesting that region-level 

analysis rater than per-CpG should be performed. Additionaly, we showed that imputation of 



16 
 

missing CpG sites applying distance treshold is a viable option to incrase inter-platform 

operability for downstream analysis. 

 In summary, our study provides an in-depth analysis of the TBS platforms’ comparative 

performance and characteristics allowing users to determine the optimal technology for 

methylome analysis depending on their needs and restrictions, and guidance for cross-platform 

data integration.   

 

Materials and Methods 

Sample origin and processing 

The reference genomic DNA (gDNA) sample (Ref.gDNA) was obtained by pooling DNA 

extracted from peripheral whole blood cells (PWBC) of adult healthy volunteers, providing 

informed consent under 15/YH/0311 of the UCL BioBank for Health and Disease. Blood samples 

were collected in EDTA-treated 10 ml BD Vacutainer™ tubes and centrifuged at 1900x g for 10 

minutes at 4ºC using a refrigerated centrifuge to separate blood cells from plasma. Buffy coat 

(0.5 ml) was transferred using Pasteur blob to a clean Falcon tube containing 4.5 mL 

HEMAgene®•BUFFY COAT DNA stabilizing reagent (Oragene) and the DNA was extracted 

using QIAamp DNA Blood Mini Kit (Qiagen). The Coriell-NA12878 DNA sample was purchased 

from Coriell Cell Repositories. Hela cell genomic DNA was purchased from New England 

Biolabs. Bladder cancer cell lines were acquired from the ATCC and cultured in prescribed 

media, gDNA was extracted using QIAamp DNA Mini Kit (Qiagen). The Human Methylated & 

Non-methylated DNA Set  (ZYMO Research) was used to generate DNA methylation standards: 

fully methylated (ZYMO-FM),  10% and 5% methylated (DNAm-10pct and DNAm-5pct) and 

unmethylated (ZYMO-UM). The negative control (ZYMO-UM) DNA in the set comes from a 

Human HCT116 DKO Non-methylated DNA that contains genetic knockouts of both DNA 
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methyltransferases DNMT1 (-/-) and DNMT3b (-/-) and has low levels of DNA methylation14, 

while the fully methylated DNA control was generated by the manufacturer by treating the 

HCT116 DKO with M.SssI methyltransferase. Sample quality was determined using Agilent 

2100 Bioanalyzer 1000 DNA chip to assess the DNA integrity and sample purity was estimated 

using NanoDrop spectrophotometer. Quantification was performed using Qubit dsDNA BR 

Assay (Invitrogen).  

Library preparation and target enrichment with Agilent SureSelect MethylSeq kit 

To generate SureSelect MethylSeq sequencing libraries (Agilent Technologies Inc.) we followed 

the manufacturer’s protocol.  Briefly, we sheared 1 µg of the gDNA on Covaris S2 ultrasonicator 

system to obtain ~150bp fragments Fragmented DNA was cleaned up using AMPure XP beads 

(Beckman Coulter) followed by end repair, A-tailing, second clean up and adapter ligation 

before the final clean up. Quality and quantity of the libraries were checked using Bioanalyzer 

dsDNA High Sensitivity chip (Agilent Technologies) and Qubit HS dsDNA Assay (Life 

Technologies, Thermo Fisher Scientific) before overnight hybridization (min 16h) with 

biotinylated oligo RNA baits followed by streptavidin-conjugated magnetic bead pulldown and 

wash steps. The captured library was then bisulfite converted using EZ DNA Methylation- Gold 

Kit (Zymo Research), followed by 8 cycles of PCR amplification and AMPure XP bead cleanup. 

Second PCR amplification with 6 cycles of the bisulfite-converted libraries was performed to 

introduce sample indices, followed by final AMPure XP bead cleanup. Library concentration was 

measured using the Qubit dsDNA HS kit and the library size distribution on a Bioanalyzer High 

Sensitivity DNA chip. 

Library preparation and target enrichment with Roche NimbleGen SeqCap Epi kit 

NimbleGen SeqCap EpiGiant libraries (Roche Sequencing) were prepared according to 

manufacturer’s instructions, as follows: 1 µg of the gDNA sample was sheared using Covaris S2 

ultrasonicator system to an average DNA fragment size of 200 bp, sheared DNA was end-
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repaired, cleaned up with magnetic beads, followed by A-tailing of the 3’end, second clean up, 

adapter ligation and double SPRI cleanup. Libraries were bisulfite converted using EZ DNA 

Methylation Lightning Kit (Zymo Research), followed by 12 cycles of Pre-Capture LM-PCR 

amplification using Kapa Hifi Uracil+ polymerase, cleanup, and fragment distribution analysis on 

Bioanalyzer High Sensitivity DNA chip.  The bisulfite-converted library was hybridized with 

biotinylated DNA capture probes over 72h and washed with streptavidin-conjugated magnetic 

beads. The enriched libraries were amplified by a second round of LM-PCR with 16 cycles using 

Kapa Hifi Uracil+ polymerase (Roche) and purified with AMPure XP magnetic beads. Library 

concentration was measured using the Qubit dsDNA HS kit, purity using NanoDrop 2000 

spectrophotometer (ThermoFisher Scientific), and the library size distribution on a Bioanalyzer 

High Sensitivity DNA chip. 

Library preparation and target enrichment with Illumina TruSeq Methyl Capture Epic kit 

The TruSeq Methyl Capture Epic kit was a gift from Illumina. Sequencing libraries were 

prepared according to the manufacturer’s instructions. In brief, 500 ng of each gDNA samples 

were sheared on Covaris S2 ultrasonicator to a median size of 160 bp followed by a cleanup 

step using AMPure XP magnetic beads, end-repair reaction, second magnetic bead clean up, 

A-tailing, adaptor ligation, and final clean up. Four samples containing adaptors were pooled 

together to a total mass of 2 µg and hybridized with a biotinylated DNA capture panel for 35min 

at 58°C.  Target DNA fragments were captured by streptavidin-conjugated magnetic beads and 

washed, followed by a second overnight hybridization (touchdown from 95°C to 58°C) 

streptavidin-conjugated magnetic bead pulldown and wash step. Enriched libraries were bisulfite 

converted using EZ DNA Methylation Lightning kit with magnetic bead desulphonation and 

clean up. Eleven cycles of PCR amplification were performed using Kapa Hifi Uracil+ 

polymerase available separately from the kit. Final libraries were bead purified to remove 

adapters, quantified using the Qubit dsDNA HS kit and the library size distribution was checked 

on a Bioanalyzer High Sensitivity DNA chip. 
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RRBS library preparation using Diagenode’s RRBS Premium kit 

The protocol for Premium RRBS kit (Diagenode) library preparation included enzymatic 

digestion of 100 ng of gDNA with MspI, followed by end repair, adaptor ligation, and size 

selection by bead purification. Each library was quantified by qPCR to determine library 

concentration and 8 samples were pooled in equimolar amounts determined by an Excel 

pooling tool provided by the manufacturer. Pooled libraries were bisulfite converted using 

manufacturer-provided BS Conversion Reagent and desulphonated on columns. The second 

qPCR was performed to determine the optimal number of cycles for the final amplification step 

for each pool (11 and 12 cycles) before final cleanup. Library concentration was measured 

using the Qubit dsDNA HS kit and the library size distribution on a Bioanalyzer High Sensitivity 

DNA chip. 

RRBS library preparation using NuGen’s Ovation RRBS Methyl-Seq System 1–16 

The Ovation RRBS Methyl-Seq System 1–16 (NuGen, now Tecan) user manual was followed to 

generate sequencing libraries by enzymatically digesting 100 ng of gDNA using MspI, followed 

by end repair, adaptor ligation, and final repair step. Generated libraries were bisulfite 

conversion using EpiTect Fast DNA Bisulfte Kit (Qiagen) purchased separately from the kit. 

Converted libraries were amplified by PCR using 12 cycles and purified using Agencourt® 

RNAClean® XP magnetic beads, and fragment distribution was checked on a Bioanalyzer High 

Sensitivity DNA chip. RRBS design BED file was created by in silico cutting of hg19 sequence 

at CG within CCGG motif and filtering to >100bp length ranges and 100 bp window from each 

end. 

Sequencing on an Illumina HiSeq 2500 instrument 

All generated targeted bisulfite-converted libraries were sequenced on the HiSeq 2500 using 

HiSeq v4 SBS reagents (Illumina) at 2x100 bp.  Barcoded samples per each library were 

multiplexed and libraries were denatured with NaOH and diluted to a final concentration of 2nM. 
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Denatured libraries were loaded onto cBot for cluster generation on separate flow cell lanes in 

HighOutput or RapidRun mode according to the manufacturer's protocol. Loading 

concentrations and percent of PhiX spike in libraries for each platform are as follows: Agilent at 

15 pM with 5% of equimolar PhiX, Roche 16.5 pM with 5% equimolar PhiX, Illumina at 11 pM 

with 10% equimolar PhiX, Diagenode at 16 pM with 5% of 12 pM PhiX, and NuGen at 11.5 pM 

with 5% of equimolar PhiX.  Sample pools were sequenced over several lanes/runs and raw 

FASTQ reads were merged prior to the analysis.  

 

Whole-genome bisulfite sequencing  

Whole-genome bisulfite sequencing (WGBS) libraries for Ref. gDNA samples (500 ng) were 

generated using CEGX TrueMethyl® Whole Genome Workflow (WGW) Kit (CEGX, UK) with an 

average insert size of 600bp. Libraries were sequenced on Illumina X Ten at 2x150 bp with 

1000M PE reads per lane. Read 2 was of low quality reducing the mapping down to 35% in PE 

mode. Therefore, only read 1 was used for mapping with a 78% alignment rate.  WGBS_SE 

data for the Coriell NA12878 sample was downloaded from GEO public repository under 

accession number GSE86765 (Encode Project - ENCBS232JAP, 2x 125bp), libraries generated 

with were sequenced on Illumina HiSeq 2500, and WGBS_PE data from Illumina BaseSpace 

Hub MethylSeq - 8 replicates of Coriell NA12878 were prepared with the TruSeq Methylation kit, 

run on one flowcell of the HiSeq 4000 at 2x76. Replicates were combined across lanes to obtain 

2- and 3-lane builds.   

 

Nanopore sequencing 

One microgram of genomic DNA from the lymphoblastoid Coriell-NA12878 cell line was sheared 

using g-Tube (Covaris) to obtain high molecular weight fragments ranging from 50kb to 160 kb. 

Fragment ends were repaired using NEBNext End Prep kit (NEB) and AMX adapters were 
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introduced using LSK109 ligation sequencing kit (Oxford Nanopore). Approximately 150 GB of 

data was generated using 2 flow cells on PromethION.  

Data analysis 

Raw sequencing data processing  

For all targeted BS-seq platforms Bismark26 data analysis pipeline was applied with few 

platform-specific modifications. Samples were demultiplexed either onboard Illumina HiSeq2500 

or offline using bcl2fastq Conversion Software v1.8.4 (Illumina). The quality of raw reads in 

FASTQ format was checked using FASTQC27 v0.11.9  (Supplementary Figure 1). 

For each sample-platform FASTQ files from different sequencing, runs were merged 

before alignment. NuGen FASTQ reads contain additional 1-3 inserted nucleotides and were 

trimmed using a diversity trimming python script provided by the manufacturer27. Any 

contaminating adaptor sequence was removed using TrimGalore28 v0.6.5 in paired-end mode 

with default conditions for adaptors and --trim1 option for Agilent, Roche, Illumina while for 

Diagenode’s platform --rrbs option was used, and for NuGen read 2 adaptor was specified. 

Bismark v0.10.126 was used for alignment to the human genome build hg19 in paired-end mode 

using Bowtie 2 and default settings.  

After alignment PCR duplicates in Agilent, Roche and Illumina were marked and 

discarded using deduplicate_bismark perl script. For RRBS data this form of deduplication is not 

recommended as all reads start with the same sequence. However, the NuGen’s platform 

contains Unique Molecular Identifiers (UMIs) that enable for precise removal of duplicates using 

Duplicate Marking python script provided by the manufacturer27. Bismark’s module 

bismark_methylation extractor with options --ignore_r2 2,  --no_overlap, --comprehensive, --

merge_nonCpG,   --bedGraph, --gzip was used to generate output files with methylation status 

for each individual CpG, coverage and genomic coordinates.  Bismark’s coverage2citosine tool 

with and without --merge_CpG option was used to obtain methylation status for each CpG in the 

genome both strands along with trinucleotide context, strand, coverage, and methylation 
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percent. The efficiency of bisulfite conversion was verified by the ratio of C to T conversion of 

CHG and CHH (non-CG) dinucleotides. Nanopore data was processed using nanoposlish18 

pipeline. MultiQC was used for visualizing aggregated quality metrics. 

DNA methylation data analysis 

Downstream analysis was performed in Unix (RHE) and R environment (v3.4.2). We 

didn’t use Repeat masking for any of the analyses. For hybridization capture methods 

PICARD29 CollectHsMetrics tool v2.3.0 was used to obtain statistics on HC efficiency. 

BEDTools30 and custom sed and awk scripts were used to calculate and visualize the target 

region coverage as a function of read depth. To compare target breadth of coverage UpSet plot 

from ComplexHeatmap 31and Venn diagram from ChipPeakAnno R packages were used to 

visualize the intersection of genomic ranges and CpG sites.   

Bismark produced strand-specific methylation calls were imported into MethylKit R 

package for downstream analysis including CpGs with more than 10 reads. To get per CpGs 

methylation levels independent on a strand, counts on both strands of a CpG dinucleotide were 

merged. To perform pairwise comparisons in methylation levels, samples of interest were 

merged into one object containing common CpGs. Pearson correlation was used to assess 

concordance in DNA methylation levels in a pairwise comparison matrix.  Differential 

methylation analysis was performed using Fisher’s exact test or logistic regression to calculate 

P-values per CpG and over 1000kb tiling windows, corrected by  SLIM method32 to obtain q-

values. Differentially methylated regions/CpGs were selected based on q-value<0.05 and 

percent methylation difference larger than 10%.  

Feature annotation was done using anotatr R package. The CpG islands for hg19 were 

retrieved through AnnotationHub package and CpG shores were defined as 2Kb 

upstream/downstream from the ends of the CpG islands, less the CpG islands, CpG shelves as 

another 2Kb upstream/downstream of the farthest upstream/downstream limits of the CpG 

shores, less the CpG islands, and CpG shores. The remaining genomic regions make up the 
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inter-CGI annotation. The genic annotations are determined by functions 

from GenomicFeatures and data from the TxDb and org.hg19.eg.db packages. Genic 

annotations include 1-5Kb upstream of the TSS, the promoter (< 1Kb upstream of the TSS), 

5’UTR, first exons, exons, introns, CDS, 3’UTR, and intergenic regions (the intergenic regions 

exclude the previous list of annotations). FANTOM5 permissive enhancers determined from bi-

directional CAGE transcription (Andersson et al. (2014) were added to genic annotations. 

Chromatin states were determined by hidden Markov models (chromHMM) on ENCODE histone 

mark data for nine cell lines: Gm12878, H1hesc, Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, 

and Nhlf, were used to check the theoretical coverage of regulatory features by each platform  

13.  GRangesList object containing all cell lines data was stratified by chromatin state. Since 

cells have different regulatory states, overlapping ranges within each chromatin state were 

reduced ignoring strand so that each state in the plot represents the union of ranges for all cell 

types. One-way analysis of variance (ANOVA) in R was used to test for statistically significant 

differences between group means. 

To calculate the breadth of coverage for the design regions determined based on 

manufacturer-provided BED files with annotation tracks, overlapping region pairs were 

intersected ignoring strand. To count the number of CpGs in regions of interest, the 

corresponding hg19 sequence was retrieved from BSgenome.Hsapiens.UCSC.hg19 using DNA 

strings R package, reduced to contain only non-overlapping regions independent of DNA strand 

and number of occurrences of CG was counted. The number of CpGs covered at a specific 

depth per platform was calculated using a custom R script. Jaccard similarity index was 

calculated using functions from HelloRanges R package. Intervene shiny app was used to 

visualize the Jaccard similarity index matrix33. 

Imputation 

We used BoostMe16 to impute the vast majority (i.e. 99.95%) of missing CpG sites, leveraging 

information learnt from just the neighboring CpG within the same dataset. BoostMe was run with 



24 
 

a 60:20:20 split between the training, validation and test datasets. On average, the training 

dataset was formed from 2M randomly selected CpG sites, while the validation and test 

datasets were made up of 0.67M randomly selected CpG sites. Imputation accuracy was 92.1% 

and 0.971 AUROC in cross-validation analysis, and 92.1% accuracy and 0.971 AUROC in the 

test dataset. In Imputation can be difficult in allosomes as the methylation composition can be 

significantly different from autosomal chromosomes due to the samples’ sex. As such, after 

excluding the allosomes, there is an average of 7.58M CpG sites, of which, an average of 

4.23M CpG sites are missing in each dataset. BoostMe achieves a 92.1% accuracy and 0.971 

AUROC in cross-validation analysis and achieves 92.1% accuracy and 0.971 AUROC with the 

test dataset (i.e., the dataset not used for training or cross-validation). In this manner, by 

imputing missing CpG sites with BoostMe, the overlap between the five platforms increases 

from 10.35% (0.79M CpG sites) to 97% (7.6M CpG sites).  
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