373 research outputs found

    Why do men with prostate cancer discontinue active surveillance for definitive treatment? A mixed methods investigation

    Get PDF
    Objectives: To explore the personal and/or medical reasons patients on active surveillance (AS) have, or consider having, further definitive treatment for their prostate cancer. Research suggests up to 50% of patients on AS will discontinue within 5 years, though reasons for discontinuation from the patient\u27s perspective is under-explored. Methods: Prostate cancer patients who were or had been on AS for at least 6 months were recruited. A questionnaire assessed reasons for receiving/considering definitive treatment and the extent to which reasons were personal or medical. Clinical information was extracted from a state-level population registry. A subset of participants were interviewed to further explore questionnaire responses. Results: One-hundred and-three individuals completed the survey; 33 were also interviewed. Fifty-four survey participants (52%) had discontinued AS for definitive treatment. Common reasons for discontinuation were evidence of disease progression, doctor recommendation, desire to act, and fear of progression. Many participants who considered or had treatment reported weighing medical and personal factors equally in their decision. Interview participants described strongly considering any amount of disease progression and personal factors such as fear of progression, family concerns, and adverse vicarious experiences when deciding whether to pursue treatment. Conclusion: Both medical and personal factors are considered when deciding whether to discontinue AS. Identifying predictors of discontinuation is essential for informing supportive care services to improve AS management

    Impact of different unconditional monetary incentives on survey response rates in men with prostate cancer: A 2-arm randomised trial

    Get PDF
    Background: Men are often viewed as a difficult group to recruit for psychological research, including in psycho-oncology. Whilst research has demonstrated the effectiveness of small monetary incentives for encouraging research participation, little research has examined different large unconditional incentive amounts. Larger unconditional incentives may result in increased participation of men in psychological research. This randomised study within a case–control trial of men diagnosed with early-stage prostate cancer aimed to investigate whether (a) response rates to a 30-min questionnaire completed via mail, online, or phone would vary with different unconditional incentive amounts, and (b) demographics would vary in those who responded within the different incentive groups. Methods: We conducted this randomised study within a case–control cross-sectional study aiming to identify the social-ecological factors influencing treatment discontinuation in prostate cancer patients. A total of 238 participants from the cross-sectional study were randomised to receive one of two unconditional incentives (n = 121 received AUD 10,n=117receivedAUD10, n = 117 received AUD 20) with the study materials (consent form and survey). Results: Overall, 113 (47 %) responded; n = 61/121 (50.4 %) in the AUD 10group,andn=52/117(44.410 group, and n = 52/117 (44.4 %) in the AUD 20 group. No evidence of a difference was found in response rates by incentive group (odds ratio 1.27, 95 % CI = 0.76 – 2.12, p = 0.36). Additionally, there were no evident differences in the demographics of the responders vs. non-responders within each incentive group (all p \u3e 0.05). Conclusions: Unlike previous research, we were unable to show that higher monetary incentives were more effective for increasing response rates. An AUD $20 unconditional incentive may be no more effective than a lesser amount for encouraging prostate cancer survivors to participate in research involving long questionnaires. Future research should consider the cost-benefits of providing large unconditional incentives, as non-responses will result in lost resources perhaps better utilised in other engagement strategies

    “Micropersonality” traits and their implications for behavioral and movement ecology research

    Get PDF
    Many animal personality traits have implicit movement‐based definitions and can directly or indirectly influence ecological and evolutionary processes. It has therefore been proposed that animal movement studies could benefit from acknowledging and studying consistent interindividual differences (personality), and, conversely, animal personality studies could adopt a more quantitative representation of movement patterns. Using high‐resolution tracking data of three‐spined stickleback fish (Gasterosteus aculeatus), we examined the repeatability of four movement parameters commonly used in the analysis of discrete time series movement data (time stationary, step length, turning angle, burst frequency) and four behavioral parameters commonly used in animal personality studies (distance travelled, space use, time in free water, and time near objects). Fish showed repeatable interindividual differences in both movement and behavioral parameters when observed in a simple environment with two, three, or five shelters present. Moreover, individuals that spent less time stationary, took more direct paths, and less commonly burst travelled (movement parameters), were found to travel farther, explored more of the tank, and spent more time in open water (behavioral parameters). Our case study indicates that the two approaches—quantifying movement and behavioral parameters—are broadly equivalent, and we suggest that movement parameters can be viewed as “micropersonality” traits that give rise to broad‐scale consistent interindividual differences in behavior. This finding has implications for both personality and movement ecology research areas. For example, the study of movement parameters may provide a robust way to analyze individual personalities in species that are difficult or impossible to study using standardized behavioral assays

    Where physics meets chemistry:thin film deposition from reactive plasmas

    Get PDF
    Functionalising surfaces using polymeric thin films is an industrially important field. One technique for achieving nanoscale, controlled surface functionalization is plasma deposition. Plasma deposition has advantages over other surface engineering processes, including that it is solvent free, substrate and geometry independent, and the surface properties of the film can be designed by judicious choice of precursor and plasma conditions. Despite the utility of this method, the mechanisms of plasma polymer growth are generally unknown, and are usually described by chemical (i.e., radical) pathways. In this review, we aim to show that plasma physics drives the chemistry of the plasma phase, and surface-plasma interactions. For example, we show that ionic species can react in the plasma to form larger ions, and also arrive at surfaces with energies greater than 1000 kJ∙mol–1 (>10 eV) and thus facilitate surface reactions that have not been taken into account previously. Thus, improving thin film deposition processes requires an understanding of both physical and chemical processes in plasma

    Beach morphodynamic classification using high-resolution nearshore bathymetry and process-based wave modelling

    Get PDF
    Classification of beach morphodynamic state relies on accurate representation of breaking wave conditions, Hb (plus grain size and spring tidal range). Measured breaking wave data, however, are absent from all but a handful of sites worldwide. Here, we apply process-based wave modelling for propagating offshore waves to the breaking zone using high-resolution nearshore bathymetry, obtaining representative and accurate Hb values for multiple beaches at regional scale, and thereby derive meaningful morphodynamic classifications that accord with observed beach state. Ninety-five beaches on the north coast of Ireland were investigated, with observed beach types and states compared to predictions based on morphodynamic parameters determined using wave, tide and sediment data, obtained from field surveys and detailed numerical wave modelling. The coast is exposed to micro-through meso-tides (0.43–3.90 m) and low sea through high swell waves (Hb = 0.13–1.18 m) and is composed of fine to medium sand resulting in a full range of beach types (wave-dominated, tide-modified and tide-dominated) and most beach states, thereby providing a comprehensive field laboratory to undertake such a comparison. We found that modal beach types reside within their predicted Relative Tide Range (RTR) and modal beach states close to the predicted dimensionless fall velocity (Ω) range. The use of high-resolution nearshore wave modelling to determine Hb was deemed the most appropriate approach for deriving predicted beach classification. The work follows the investigation of the same coast by Jackson et al. (2005) who found shortcomings in relating beach types to breaker wave conditions. However, advances in inshore wave modelling and access to high-resolution nearshore bathymetry since then have enabled improved estimates of breaker height, producing more accurate results and enhancing previous work. The results highlight the need to obtain accurate estimates of Hb and Tp if they are to be used effectively in predicting beach parameters. This work therefore sets a precedence for other coastal sites worldwide where detailed nearshore bathymetry is available and Hb can be derived from process-based wave modelling, improving the classification and prediction of morphodynamic beach type and state

    Cell sheets in cell therapies

    Get PDF
    This review aims to provide a broad introduction to the use of cell sheets and the role of materials in the delivery of cell sheets to patients within a clinical setting. Traditionally, cells sheets have been, and currently are, fabricated using established and accepted cell culture methods within standard formats (e.g., petri dishes) utilizing biological substrates. Synthetic surfaces provide a far more versatile system for culturing and delivering cell sheets. This has the potential to positively affect quality, and efficient, localized cell delivery has a significant impact on patient outcome and on the overall cost of goods. We highlight current applications of these advanced carriers and future applications of these surfaces and cell sheets with an emphasis both on clinical use and regulatory requirements

    The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Get PDF
    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the L_X-T relation is injected at high redshift. Simulations in which AGN feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict positive evolution of the normalisation, and differ from our data at more than 5 sigma. This suggests that more efficient feedback at high redshift may be needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added references to match published versio

    Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning

    Get PDF
    Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor
    corecore