46 research outputs found

    Differential activation of frontoparietal attention networks by social and symbolic spatial cues

    Get PDF
    Perception of both gaze-direction and symbolic directional cues (e.g. arrows) orient an observer’s attention toward the indicated location. It is unclear, however, whether these similar behavioral effects are examples of the same attentional phenomenon and, therefore, subserved by the same neural substrate. It has been proposed that gaze, given its evolutionary significance, constitutes a ‘special’ category of spatial cue. As such, it is predicted that the neural systems supporting spatial reorienting will be different for gaze than for non-biological symbols. We tested this prediction using functional magnetic resonance imaging to measure the brain’s response during target localization in which laterally presented targets were preceded by uninformative gaze or arrow cues. Reaction times were faster during valid than invalid trials for both arrow and gaze cues. However, differential patterns of activity were evoked in the brain. Trials including invalid rather than valid arrow cues resulted in a stronger hemodynamic response in the ventral attention network. No such difference was seen during trials including valid and invalid gaze cues. This differential engagement of the ventral reorienting network is consistent with the notion that the facilitation of target detection by gaze cues and arrow cues is subserved by different neural substrates

    Differential Activation of Frontoparietal Attention Networks by Social and Symbolic Spatial Cues

    Get PDF
    Perception of both gaze-direction and symbolic directional cues (e.g. arrows) orient an observer’s attention toward the indicated location. It is unclear, however, whether these similar behavioral effects are examples of the same attentional phenomenon and, therefore, subserved by the same neural substrate. It has been proposed that gaze, given its evolutionary significance, constitutes a ‘special’ category of spatial cue. As such, it is predicted that the neural systems supporting spatial reorienting will be different for gaze than for non-biological symbols. We tested this prediction using functional magnetic resonance imaging to measure the brain’s response during target localization in which laterally presented targets were preceded by uninformative gaze or arrow cues. Reaction times were faster during valid than invalid trials for both arrow and gaze cues. However, differential patterns of activity were evoked in the brain. Trials including invalid rather than valid arrow cues resulted in a stronger hemodynamic response in the ventral attention network. No such difference was seen during trials including valid and invalid gaze cues. This differential engagement of the ventral reorienting network is consistent with the notion that the facilitation of target detection by gaze cues and arrow cues is subserved by different neural substrates

    Task-invariant brain responses to the social value of faces

    Get PDF
    Abstract ■ In two fMRI experiments (n = 44) using tasks with different demands-approach-avoidance versus one-back recognition decisions-we measured the responses to the social value of faces. The face stimuli were produced by a parametric model of face evaluation that reduces multiple social evaluations to two orthogonal dimensions of valence and power [Oosterhof, N. N., & Todorov, A. The functional basis of face evaluation

    Distributed representations of dynamic facial expressions in the superior temporal sulcus.

    Get PDF
    Previous research on the superior temporal sulcus (STS) has shown that it responds more to facial expressions than to neutral faces. Here, we extend our understanding of the STS in two ways. First, using targeted high-resolution fMRI measurements of the lateral cortex and multivoxel pattern analysis, we show that the response to seven categories of dynamic facial expressions can be decoded in both the posterior STS (pSTS) and anterior STS (aSTS). We were also able to decode patterns corresponding to these expressions in the frontal operculum (FO), a structure that has also been shown to respond to facial expressions. Second, we measured the similarity structure of these representations and found that the similarity structure in the pSTS significantly correlated with the perceptual similarity structure of the expressions. This was the case regardless of whether we used pattern classification or more traditional correlation techniques to extract the neural similarity structure. These results suggest that distributed representations in the pSTS could underlie the perception of facial expressions

    Distributed representations of dynamic facial expressions in the superior temporal sulcus.

    Get PDF
    Previous research on the superior temporal sulcus (STS) has shown that it responds more to facial expressions than to neutral faces. Here, we extend our understanding of the STS in two ways. First, using targeted high-resolution fMRI measurements of the lateral cortex and multivoxel pattern analysis, we show that the response to seven categories of dynamic facial expressions can be decoded in both the posterior STS (pSTS) and anterior STS (aSTS). We were also able to decode patterns corresponding to these expressions in the frontal operculum (FO), a structure that has also been shown to respond to facial expressions. Second, we measured the similarity structure of these representations and found that the similarity structure in the pSTS significantly correlated with the perceptual similarity structure of the expressions. This was the case regardless of whether we used pattern classification or more traditional correlation techniques to extract the neural similarity structure. These results suggest that distributed representations in the pSTS could underlie the perception of facial expressions

    Gaze cueing elicited by emotional faces is influenced by affective context

    Get PDF
    When we observe someone shift their gaze to a peripheral event or object, a corresponding shift in our own attention often follows. This social orienting response, joint attention, has been studied in the laboratory using the gaze cueing paradigm. Here, we investigate the combined influence of the emotional content displayed in two critical components of a joint attention episode: The facial expression of the cue face, and the affective nature of the to-be-localized target object. Hence, we presented participants with happy and disgusted faces as cueing stimuli, and neutral (Experiment 1), pleasant and unpleasant (Experiment 2) pictures as target stimuli. The findings demonstrate an effect of ‘emotional context’ confined to participants viewing pleasant pictures. Specifically, gaze cueing was boosted when the emotion of the gazing face (i.e., happy) matched that of the targets (pleasant). Demonstrating modulation by emotional context highlights the vital flexibility that a successful joint attention system requires in order to assist our navigation of the social world

    Autism Spectrum Traits in the Typical Population Predict Structure and Function in the Posterior Superior Temporal Sulcus

    Get PDF
    Autism spectrum disorders (ASDs) are typically characterized by impaired social interaction and communication, narrow interests, and repetitive behaviors. The heterogeneity in the severity of these characteristics across individuals with ASD has led some researchers to suggest that these disorders form a continuum which extends into the general, or “typical,” population, and there is growing evidence that the extent to which typical adults display autistic traits, as measured using the autism-spectrum quotient (AQ), predicts performance on behavioral tasks that are impaired in ASD. Here, we show that variation in autism spectrum traits is related to cortical structure and function within the typical population. Voxel-based morphometry showed that increased AQ scores were associated with decreased white matter volume in the posterior superior temporal sulcus (pSTS), a region important in processing socially relevant stimuli and associated with structural and functional impairments in ASD. In addition, AQ was correlated with the extent of cortical deactivation of an adjacent area of pSTS during a Stroop task relative to rest, reflecting variation in resting state function. The results provide evidence that autism spectrum characteristics are reflected in neural structure and function across the typical (non-ASD) population
    corecore