55 research outputs found

    Animal health research and development

    Get PDF
    A book chapter on veterinary health services in Zimbabwe.Zimbabwe’s veterinary delivery system and research capability have been shaped by the need to prevent, control, manage and/or eradicate animal diseases.202 Although major epidemics like rinderpest, contagious bovine pleuropneumonia and African east coast fever have been eradicated, there is still need to ensure that any reintroduction of these diseases is prevented. The Department of Veterinary Services has the mandate to provide animal health services and has had to put in place special control measures for some of the endemic diseases such as foot and mouth disease, contagious abortion, anthrax, beef measles and salmonellosis. These diseases affect both the export and domestic beef markets. For purposes of foot and mouth disease surveillance and control, the country is divided into foot and mouth disease control zones through a network of cattle and buffalo proof cordon fences. Epidemiological surveillance, monitoring and reporting of specified diseases and pests as of2004 relied on a countrywide network of veterinary infrastructure that comprised the following: eight provincial and 53 district offices; 308 subdistrict animal management and health centres in the smallholder sector and six in commercial fanning areas; one central veterinary laboratory; and three provincial diagnostic laboratories in Bulawayo, Mutare and Masvingo

    Factors Affecting the Propensity of Tsetse Flies to Enter Houses and Attack Humans Inside: Increased Risk of Sleeping Sickness in Warmer Climates

    Get PDF
    Background Sleeping sickness, or human African trypanosomiasis, is caused by two species of Trypanosoma brucei that are transmitted to humans by tsetse flies (Glossina spp.) when these insects take a bloodmeal. It is commonly assumed that humans must enter the normal woodland habitat of the flies to become infected, but recent studies found that tsetse frequently attack humans inside buildings. Factors affecting human/tsetse contact in buildings need identification. Methodology/Principal Findings In Zimbabwe, tsetse were allowed access to a house via an open door. Those in the house at sunset, and those alighting on humans in the house during the day, were caught using hand-nets. Total catches were unaffected by: (i) the presence of humans in the house and at the door, (ii) wood smoke from a fire inside the house or just outside, (iii) open windows, and (iv) chemicals simulating the odor of cattle or of humans. Catches increased about 10-fold with rising ambient temperatures, and during the hottest months the proportion of the total catch that was taken from the humans increased from 5% to 13%. Of the tsetse caught from humans, 62% consisted of female G. morsitans morstans and both sexes of G. pallidipes, i.e., the group of tsetse that normally alight little on humans. Some of the tsetse caught were old enough to be effective vectors. Conclusion/Significance Present results confirm previous suggestions that buildings provide a distinctive and important venue for transmission of sleeping sickness, especially since the normal repellence of humans and smoke seems poorly effective in such places. The importance of the venue would be increased in warmer climates

    Towards an early warning system for Rhodesian sleeping sickness in savannah areas: man-like traps for tsetse flies

    Get PDF
    Background: In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts. Methodology/Principal Findings: In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men. Conclusion/Significance: Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study

    Pyrethroid treatment of cattle for tsetse control: Reducing its impact on dung fauna

    Get PDF
    Background: African trypansomiases of humans and animals can be controlled by attacking the vectors,various species of tsetse fly. Treatment of cattle with pyrethroids to kill tsetse as they feed is the most cost-effective method. However, such treatments can contaminate cattle dung, thereby killing the fauna which disperse the dung and so play an important role in soil fertility. Hence there is a need to identify cost-effective methods of treating cattle with minimal impact on dung fauna. Methodology/Principal Findings: We used dung beetles to field bioassay the levels of dung contamination following the use of spray and pour-on formulations of deltamethrin, applied to various parts of the body of cattle in Zimbabwe. Results suggested that dung was contaminated by contact with insecticide on the body surface as the cattle defecated, and by ingestion of insecticide as the cattle licked themselves. Death of dung beetles was reduced to negligible levels by using only the spray and applying it to the legs and belly or legs alone, i.e., places where most tsetse feed. Conclusion/Significance: The restricted applications suitable for minimising the impact on dung fauna have the collateral benefits of improving the economy and convenience of cattle treatments for tsetse control. The demonstration of collateral benefits is one of the surest ways of promoting environmentally friendly procedures

    A neglected aspect of the epidemiology of sleeping sickness: the propensity of the tsetse fly vector to enter houses.

    Get PDF
    BACKGROUND: When taking a bloodmeal from humans, tsetse flies can transmit the trypanosomes responsible for sleeping sickness, or human African trypanosomiasis. While it is commonly assumed that humans must enter the normal woodland habitat of the tsetse in order to have much chance of contacting the flies, recent studies suggested that important contact can occur due to tsetse entering buildings. Hence, we need to know more about tsetse in buildings, and to understand why, when and how they enter such places. METHODOLOGY/PRINCIPAL FINDINGS: Buildings studied were single storied and comprised a large house with a thatched roof and smaller houses with roofs of metal or asbestos. Each building was unoccupied except for the few minutes of its inspection every two hours, so focusing on the responses of tsetse to the house itself, rather than to humans inside. The composition, and physiological condition of catches of tsetse flies, Glossina morsitans morsitans and G. pallidipes, in the houses and the diurnal and seasonal pattern of catches, were intermediate between these aspects of the catches from artificial refuges and a host-like trap. Several times more tsetse were caught in the large house, as against the smaller structures. Doors and windows seemed about equally effective as entry points. Many of the tsetse in houses were old enough to be potential vectors of sleeping sickness, and some of the flies alighted on the humans that inspected the houses. CONCLUSION/SIGNIFICANCE: Houses are attractive in themselves. Some of the tsetse attracted seem to be in a host-seeking phase of behavior and others appear to be looking for shelter from high temperatures outside. The risk of contracting sleeping sickness in houses varies according to house design

    Where, when and why do tsetse contact humans? Answers from studies in a National Park of Zimbabwe

    Get PDF
    The original publication is available at http://journals.plos.org/plosntdsCITATION: Torr, S.J., Chamisa, A., Mangwiro, T.N.C. & Vale, G.A. 2012. Where, when and why do tsetse contact humans?: Answers from studies in a National Park of Zimbabwe. PLoS Neglected Tropical Diseases, s 6(8):e1791, doi:10.1371/journal.pntd.0001791.Background: Sleeping sickness, also called human African trypanosomiasis, is transmitted by the tsetse, a blood-sucking fly confined to sub-Saharan Africa. The form of the disease in West and Central Africa is carried mainly by species of tsetse that inhabit riverine woodland and feed avidly on humans. In contrast, the vectors for the East and Southern African form of the disease are usually savannah species that feed mostly on wild and domestic animals and bite humans infrequently, mainly because the odours produced by humans can be repellent. Hence, it takes a long time to catch many savannah tsetse from people, which in turn means that studies of the nature of contact between savannah tsetse and humans, and the ways of minimizing it, have been largely neglected. Methodology/Principal Findings: The savannah tsetse, Glossina morsitans morsitans and G. pallidipes, were caught from men in the Mana Pools National park of Zimbabwe. Mostly the catch consisted of young G. m. morsitans, with little food reserve. Catches were increased by 4–8 times if the men were walking, not stationary, and increased about ten times more if they rode on a truck at 10 km/h. Catches were unaffected if the men used deodorant or were baited with artificial ox odour, but declined by about 95% if the men were with an ox. Surprisingly, men pursuing their normal daily activities were bitten about as much when in or near buildings as when in woodland. Catches from oxen and a standard ox-like trap were poor indices of the number and physiological state of tsetse attacking men. Conclusion/Significance: The search for new strategies to minimize the contact between humans and savannah tsetse should focus on that occurring in buildings and vehicles. There is a need to design a man-like trap to help to provide an index of sleeping sickness risk.Financial support: UNICEF/UNDP/World Bank/FAO Special Programme for Research and Training in Tropical Diseases (Project no. A70598)http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001791Publisher's versio

    Percent distribution of ovarian categories of catches at the trap (A), refuges (B) and Houses 1–3 (C).

    No full text
    <p>Based on pooled data for all months. Sample sizes for the trap, refuges and houses were 86, 59 and 98, respectively, for <i>G. m. morsitans</i> and 627, 50 and 307, respectively, for <i>G. pallidipes</i>.</p

    Temperature in a refuge and Houses 1–3 at various times of day.

    No full text
    <p>Temperature is expressed as the mean difference between the temperature in the refuge or house and the temperature in a Stevenson screen, so that if the difference is negative the temperature in the refuge or house was lower than in the screen. Vertical bars through the plots indicate the 95% confidence limits of the mean. Some plots are slightly displaced horizontally to ensure that the bars are not confused. Houses 1, 2 and 3 had roofs of thatch, asbestos and tin, respectively.</p

    Plan view of Houses 1–3.

    No full text
    <p>In House 1 the internal glass windows and internal doors were always open; the external E door was always closed. The external W door of House 1, the external doors of Houses 2 and 3, and the external glass windows of all houses were open or closed as described in the text.</p
    • …
    corecore