529 research outputs found

    High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Get PDF
    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry Experiment satellite of carbon monoxide. The effect of the atmosphere’s chemistry and physics on this molecule is measured through its isotopologues, primarily 13CO (carbon-13 substituted carbon monoxide). Isotopic chemistry allows a key analysis of the atmosphere as it may be used as a tracer for chemical reactions and dynamical processes. The carbon monoxide fractionation results in Chapter IV present the first global measurements of isotopic fractionation of CO, showing significant fractionation in the upper atmosphere (60-80 km) as a result of the photolysis of carbon dioxide (CO2)

    Battle-Scarred: Surgery, Medicine and Military Welfare during the British Civil Wars

    Get PDF
    The British Civil Wars of the mid-17th Century are often overlooked in history classrooms and television channels, yet they represent one of the most traumatic periods in the history of Britain, killing proportionally far more British than the World Wars of the 20th Century. In an effort to communicate the human cost of the Civil Wars, Dr Andrew Hopper and history PhD students Stewart Beale and Hannah Worthen write about their recent exhibition ‘Battle- Scarred’, which displays medical instruments and aspects of 17th Century welfare systems

    Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments

    Get PDF
    Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in “arrhythmic” environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth’s surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark

    Development of the Astyanax mexicanus circadian clock and non-visual light responses

    Get PDF
    Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms

    Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography

    Get PDF
    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals

    Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13

    Get PDF
    Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu-ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu-nitrosyl complex with a Cu-N-O bond angle of similar to 150 degrees. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn-Teller distorted hexaamine complex [Cu(NH3)(6)](2+) in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process

    Recent developments in X-ray diffraction/scattering computed tomography for materials science

    Get PDF
    X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'

    Circadian rhythmicity in murine blood:Electrical effects of malaria infection and anemia

    Get PDF
    Circadian rhythms are biological adaptations to the day-night cycle, whereby cells adapt to changes in the external environment or internal physiology according to the time of day. Whilst many cellular clock mechanisms involve gene expression feedback mechanisms, clocks operate even where gene expression is absent. For example, red blood cells (RBCs) do not have capacity for gene expression, and instead possess an electrophysiological oscillator where cytosolic potassium plays a key role in timekeeping. We examined murine blood under normal conditions as well as in two perturbed states, malaria infection and induced anemia, to assess changes in baseline cellular electrophysiology and its implications for the electrophysiological oscillator. Blood samples were analyzed at 4-h intervals over 2 days by dielectrophoresis, and microscopic determination of parasitemia. We found that cytoplasmic conductivity (indicating the concentration of free ions in the cytoplasm and related to the membrane potential) exhibited circadian rhythmic behavior in all three cases (control, malaria and anemia). Compared to control samples, cytoplasm conductivity was decreased in the anemia group, whilst malaria-infected samples were in antiphase to control. Furthermore, we identified rhythmic behavior in membrane capacitance of malaria infected cells that was not replicated in the other samples. Finally, we reveal the historically famous rhythmicity of malaria parasite replication is in phase with cytoplasm conductivity. Our findings suggest the electrophysiological oscillator can impact on malaria parasite replication and/or is vulnerable to perturbation by rhythmic parasite activities

    Council tax valuation bands, socio-economic status and health outcome: a cross-sectional analysis from the Caerphilly Health and Social Needs Study

    Get PDF
    Council tax valuation bands (CTVBs) are a categorisation of household property value in Great Britain. The aim of the study was to assess the CTVB as a measure of socio-economic status by comparing the strength of the associations between selected health and lifestyle outcomes and CTVBs with two measures of socio-economic status: the National Statistics Socio-Economic Classification (NS-SEC) and the 2001 UK census-based Townsend deprivation index. METHODS: Cross-sectional analysis of data on 12,092 respondents (adjusted response 62.7%) to the Caerphilly Health and Social Needs Study, a postal questionnaire survey undertaken in Caerphilly county borough, south-east Wales, UK. The CTVB was assigned to each individual by matching the sampling frame to the local authority council tax register. Crude and age-gender adjusted odds ratios for each category of CTVB, NS-SEC and fifth of the ward distribution of Townsend scores were estimated for smoking, poor diet, obesity, and limiting long-term illness using logistic regression. Mean mental (MCS) and physical (PCS) component summary scores of the Short-Form SF-36 health status questionnaire were estimated in general linear models. RESULTS: There were significant trends in odds ratios across the CTVB categories for all outcomes, most marked for smoking and mental and physical health status. The adjusted odds ratio for being a smoker in the lowest versus highest CTVB category was 3.80 (95% CI: 3.06, 4.71), compared to 3.00 (95% CI: 2.30, 3.90) for the NS-SEC 'never worked and long-term unemployed' versus 'higher managerial and professional' categories, and 1.61 (95% CI: 1.42, 1.83) for the most deprived versus the least deprived Townsend fifth. The difference in adjusted mean MCS scores was 5.9 points on the scale for CTVB, 9.2 for NS-SEC and 3.2 for the Townsend score. The values for the adjusted mean PCS scores were 6.3 points for CTVB, 11.3 for NS-SEC, and 2.5 for the Townsend score. CONCLUSION: CTVBs assigned to individuals were strongly associated with the health and lifestyle outcomes modelled in this study. CTVBs are readily available for all residential properties and deserve further consideration as a proxy for socio-economic status in epidemiological studies in Great Britain
    • 

    corecore