251 research outputs found
Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange
Based on the results of density functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces is proposed, which relies on the ability of H bonds to rearrange through quantum tunneling. The mechanism involves quasifree rotation of the dimer and exchange of H-bond donor and acceptor molecules. At appropriate temperatures, water dimers diffuse more rapidly than water monomers, thus providing a physical explanation for the experimentally measured high diffusivity of water dimers on Pd{111} [Mitsui et al., Science 297, 1850 (2002)]
General model for water monomer adsorption on close-packed transition and noble metal surfaces
Ab initio density functional theory has been used to investigate the adsorption of H2O on several close-packed transition and noble metal surfaces. A remarkably common binding mechanism has been identified. On every surface H2O binds preferentially at an atop adsorption site with the molecular dipole plane nearly parallel to the surface. This binding mode favors interaction of the H2O 1b(1) delocalized molecular orbital with surface wave functions
Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements
Understanding the neural mechanisms responsible for human social interactions
is difficult, since the brain activities of two or more individuals have to be
examined simultaneously and correlated with the observed social patterns. We
introduce the concept of hyper-brain network, a connectivity pattern
representing at once the information flow among the cortical regions of a
single brain as well as the relations among the areas of two distinct brains.
Graph analysis of hyper-brain networks constructed from the EEG scanning of 26
couples of individuals playing the Iterated Prisoner's Dilemma reveals the
possibility to predict non-cooperative interactions during the decision-making
phase. The hyper-brain networks of two-defector couples have significantly less
inter-brain links and overall higher modularity - i.e. the tendency to form two
separate subgraphs - than couples playing cooperative or tit-for-tat
strategies. The decision to defect can be "read" in advance by evaluating the
changes of connectivity pattern in the hyper-brain network
Superconductivity above 30 K in alkali-metal-doped hydrocarbon
The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has extended the possibility of high-Tc superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration
Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion
BACKGROUND AND PURPOSE: The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH: HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl(-) secretion by measuring short-circuit current (I(SC)) and tracer fluxes of (22)Na(+) and (36)Cl(-). Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na(+)/K(+)-ATPase and intracellular cAMP levels (ELISA) were measured. KEY RESULTS: In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced I(SC) within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced I(SC) was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na(+)/K(+)-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na(+)/K(+)-ATPase. CONCLUSION AND IMPLICATIONS: Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na(+)/K(+)-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea
Variations in the Difference between Mean Sea Level measured either side of Cape Hatteras and Their Relation to the North Atlantic Oscillation
We consider the extent to which the difference in mean sea level (MSL) measured on the North American Atlantic coast either side of Cape Hatteras varies as a consequence of dynamical changes in the ocean caused by fluctuations in the North Atlantic Oscillation (NAO). From analysis of tide gauge data, we know that changes in MSL-difference and NAO index are correlated on decadal to century timescales enabling a scale factor of MSL-difference change per unit change in NAO index to be estimated. Changes in trend in the NAO index have been small during the past few centuries (when measured using windows of order 60–120 years). Therefore, if the same scale factor applies through this period of time, the corresponding changes in trend in MSL-difference for the past few centuries should also have been small. It is suggested thereby that the sea level records for recent centuries obtained from salt marshes (adjusted for long-term vertical land movements) should have essentially the same NAO-driven trends south and north of Cape Hatteras, only differing due to contributions from other processes such as changes in the Meridional Overturning Circulation or ‘geophysical fingerprints’. The salt marsh data evidently support this interpretation within their uncertainties for the past few centuries, and perhaps even for the past millennium. Recommendations are made on how greater insight might be obtained by acquiring more measurements and by improved modelling of the sea level response to wind along the shelf
The Roles of Transmembrane Domain Helix-III during Rhodopsin Photoactivation
Background: Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11- cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear.
Principal Findings: We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation. Specifically, we study changes in accessibility and reactivity of cysteine residues introduced into the TM helix-III of rhodopsin. Twenty-eight single-cysteine mutants of rhodopsin (P107C-R135C) were prepared after substitution of all natural cysteine residues (C140/C167/C185/C222/C264/C316) by alanine. The cysteine mutants were expressed in COS-1 cells and rhodopsin was purified after regeneration with 11-cis-retinal. Cysteine accessibility in these mutants was monitored by reaction with 4, 49-dithiodipyridine (4-PDS) in the dark and after illumination. Most of the mutants except for T108C, G109C, E113C, I133C, and R135C showed no reaction in the dark. Wide
variation in reactivity was observed among cysteines at different positions in the sequence 108–135 after photoactivation. In particular, cysteines at position 115, 119, 121, 129, 131, 132, and 135, facing 11-cis-retinal, reacted with 4-PDS faster than neighboring amino acids. The different reaction rates of mutants with 4-PDS after photoactivation suggest that the amino acids in different positions in helix-III are exposed to aqueous environment to varying degrees. Significance: Accessibility data indicate that an aqueous/hydrophobic boundary in helix-III is near G109 and I133. The lack of reactivity in the dark and the accessibility of cysteine after photoactivation indicate an increase of water/4-PDS accessibility for certain cysteine-mutants at Helix-III during formation of Meta II. We conclude that photoactivation resulted in water-accessible at the chromophore-facing residues of Helix-III.National Institutes of Health (U.S.) (grant GM28289)National Eye Institute (Grant Grant EY11716)National Science Foundation (U.S.) (grant EIA-0225609
Determination of Therapeutic Equivalence of Generic Products of Gentamicin in the Neutropenic Mouse Thigh Infection Model
Background: Drug regulatory agencies (DRA) support prescription of generic products of intravenous antibiotics assuming therapeutic equivalence from pharmaceutical equivalence. Recent reports of deaths associated with generic heparin and metoprolol have raised concerns about the efficacy and safety of DRA-approved drugs. Methodology/Principal Findings: To challenge the assumption that pharmaceutical equivalence predicts therapeutic equivalence, we determined in vitro and in vivo the efficacy of the innovator product and 20 pharmaceutically equivalent generics of gentamicin. The data showed that, while only 1 generic product failed in vitro (MIC = 45.3 vs. 0.7 mg/L, P,0.05), 10 products (including gentamicin reference powder) failed in vivo against E. coli due to significantly inferior efficacy (E max = 4.81 to 5.32 vs. 5.99 log 10 CFU/g, P#0.043). Although the design lacked power to detect differences in survival after thigh infection with P. aeruginosa, dissemination to vital organs was significantly higher in animals treated with generic gentamicin despite 4 days of maximally effective treatment. Conclusion: Pharmaceutical equivalence does not predict therapeutic equivalence of generic gentamicin. Stricter criteri
- …