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Abstract  1 

In this research, we have demonstrated the ability of several yeast species to 2 

mediate U(VI) biomineralization through uranium phosphate biomineral 3 

formation when utilizing an organic source of phosphorus (glycerol 4 

2-phosphate disodium salt hydrate (C3H7Na2O6P.xH2O (G2P)) or phytic acid 5 

sodium salt hydrate (C6H18O24P6.xNa+.yH2O (PyA))) in the presence of soluble 6 

UO2(NO3)2. The formation of metaankileite (K2(UO2)2(PO4)2.6(H2O)), 7 

chernikovite ((H3O)2(UO2)2(PO4)2.6(H2O)), bassetite 8 

(Fe++(UO2)2(PO4)2.8(H2O)), and uramphite ((NH4)(UO2)(PO4).3(H2O)) on cell 9 

surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid 10 

medium amended with uranium and an organic phosphorus source, as well as 11 

in yeasts pre-grown in organic phosphorus-containing media and then 12 

subsequently exposed to UO2(NO3)2. The resulting minerals depended on the 13 

yeast species as well as physico-chemical conditions. The results obtained in 14 

this study demonstrate that phosphatase-mediated uranium biomineralization 15 

can occur in yeasts supplied with an organic phosphate substrate as sole 16 

source of phosphorus. Further understanding of yeast interactions with 17 

uranium may be relevant to development of potential treatment methods for 18 

uranium waste, utilization of organic phosphate sources, and for prediction of 19 

microbial impacts on the fate of uranium in the environment.  20 

21 
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Introduction  1 

Uranium contamination of the environment occurs from a number of sources 2 

including the nuclear industry, weathering of uranium-containing natural rocks 3 

and minerals, and the extensive use of uranium-containing phosphate 4 

fertilizers (Llorens et al. 2012). One potential strategy to inhibit the spread of 5 

uranium in the environment consists of inducing uranium precipitation via a 6 

biogenic or non-biogenic process. As previous research has demonstrated, 7 

many microorganisms can accumulate large amounts of toxic metals and 8 

generate crystalline minerals: toxic metals can precipitate with ligands 9 

generated from chemical and/or enzymatic processes, such as sulfide, 10 

carbonate, phosphate and oxalate (Macaskie et al. 1992; 2000; Gadd 2010; 11 

Sivaswamy et al. 2011). Many studies have focused on uranium reduction 12 

processes in bacteria, which can play an important role in uranium 13 

bioremediation (Lovley and Phillips 1992; Llorens et al. 2012; Martinez et al. 14 

2007; 2014). Several Gram-positive and Gram-negative bacteria, such as 15 

Cupriavidus metallidurans CH34 (Ray et al. 2011), Rhodopseudomonas 16 

palustris (Llorens et al. 2012), Thermoterrabacterium ferrireducens (Khijniak et 17 

al. 2005), Mycobacterium smegmatis (Andres et al. 1993; 1994), Bacillus 18 

subtilis (Fowle et al. 2000), Rahnella sp. (Martinez et al. 2007), and 19 

Shewanella oneidensis MR-1 (Sheng and Fein 2013) can reduce U(VI) to U(IV) 20 

which precipitates as U(IV)-carbonate. Citrobacter sp. can precipitate 21 

U(VI)-phosphate minerals as a result of phosphatase-mediated hydrolysis of 22 

an organic source of phosphorus in the presence of U(VI) (Macaskie et al. 23 

1992; 1994; 2000).   24 

Fungi show some variation in cell wall chemical composition, which leads to a 25 

broad metal biosorption capacity range across a variety of fungal species 26 

(Gadd 2009; 2010; Fomina and Gadd 2014). Most proposed U bioremediation 27 

applications of fungi have concentrated on biosorption of uranium, sometimes 28 

using waste biomass generated from large scale industrial fungal 29 
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fermentations (Lovley and Phillips 1992; Andres et al. 1993; Macaskie et al. 1 

2000; Fowle et al. 2000; Sakamoto et al. 2005; Aytas et al. 2011; Llorens et al. 2 

2012). A composite adsorbent consisting of Jania rubens (marine macroalga) 3 

and Saccharomyces cerevisiae immobilized on silica gel showed good 4 

biosorption properties in removing uranium from dilute aqueous solution (Aytas 5 

et al. 2011). However, little attention has been paid to uranium 6 

biomineralization by fungal systems. Previous research has demonstrated that 7 

fungi exhibit uranium tolerance and can solubilize uranium oxides and 8 

depleted uranium and reprecipitate secondary uranium phosphate minerals of 9 

the meta-autunite group, uramphite and/or chernikovite, which can encrust 10 

fungal hyphae to high accumulation values (Fomina et al. 2007; 2008; Gadd 11 

and Fomina 2011). Such minerals may be capable of long-term U retention 12 

(Fomina et al. 2007; 2008; Gadd and Fomina 2011). Fungi, like bacteria, also 13 

show the ability for phosphatase-mediated uranium precipitation during growth 14 

on an organic phosphorus source, and extensively precipitated uranium and 15 

phosphorus-containing minerals on fungal hyphal surfaces (Liang et al. 2015a). 16 

S. cerevisiae also shows some properties of uranium biomineralization through 17 

formation of a U(IV)-bearing precipitate during growth in a high-phosphate 18 

medium (Ohnuki et al. 2005). Uranium removal by yeasts has mainly focused 19 

on S. cerevisiae, while other yeast species have received little attention 20 

(Soares et al. 2002; Ohnuki et al. 2005; Sakamoto et al. 2005; 2007; Sarri et al. 21 

2009).  22 

The objective of this study was to evaluate the potency of several yeast strains, 23 

some originating from metal-polluted environments, to accumulate and 24 

immobilize uranium through phosphatase-facilitated uranium phosphate 25 

precipitation. Fundamental understanding of the interactions of yeasts with 26 

uranium may be helpful in further understanding yeast eco-physiology in 27 

polluted habitats, and for developing radioactive waste treatments, short-term 28 

and long-term waste management strategies, and for better predicting 29 
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microbial impacts on the fate of uranium in the environment and in waste 1 

repositories. 2 
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Materials and Methods 1 

Organisms and media  2 

Yeast strains used in the experiments were Kluyveromyces lactis IFO1267 3 

(Dombrowski) Van der Walt and Pichia acaciae (NRRL 18665) Van der Walt 4 

(kindly supplied by Professor Mike Stark, University of Dundee) (Worsham and 5 

Bolen 1990); Cryptococcus podzolicus PYCC 4488T (= CBS 6819T) (Babeva & 6 

Reshetova) Golubev, originally isolated from a disused arsenic mine in Devon; 7 

Cryptococcus filicatus Golubev & Samp JP, originally isolated from a disused 8 

Cornish copper mine; Candida sake (Saito & Oda M) van Uden & Buckley HR, 9 

originally isolated from a lead-polluted area in Wales (strain details are found 10 

in Holland et al. 2014) and Candida argentea (NCYC 3753T) S.L. Holland, S.V. 11 

Avery & P.S. Dyer sp. nov., originally isolated from a metal-polluted site in 12 

Wales (kindly supplied by Dr Sara Holland, University of Nottingham). These 13 

yeast strains were chosen for their demonstrated abilities in mineral and toxic 14 

metal biotransformations (Holland et al. 2011; 2014; Fernandes et al. 2014; 15 

Liang et al. 2015b). All yeast cells were grown in Modified Burkholder’s 16 

medium (MBM) in 250 ml Erlenmeyer conical flasks containing 100 ml nutrient 17 

medium on an orbital shaking incubator (Infors Multitron Standard, Rittergasse, 18 

Switzerland) at 180 rpm for 48 h at 30°C in the dark. Modified Burkholder’s 19 

medium (MBM) consists of dextrose 20 g, (NH4)2SO4 4 g, asparagine 2 g, 20 

KH2PO4 1.5 g, MgSO4·7H2O 0.5 g, CaCl2·2H2O 0.33 g, KI 7.6 mg, 21 

ZnSO4·7H2O 0.7 mg, FeSO4·7H2O 0.5 mg, MnSO4·4H2O 0.1 mg, 22 

Na2B4O7·10H2O 0.1 mg, CuSO4·5H2O 0.1 mg, (NH4)6MO7O24·4H2O 0.1 mg, 23 

inositol 10,000 µg, nicotinic acid 200 µg, pyridoxine 200 µg, thiamine HCl 200 24 

µg, pantothenic acid 200 µg, p-amino benzoic acid 50 µg and biotin 2 µg per 25 

1000 ml sterile Milli-Q water. Cells at 48 h were harvested by centrifugation at 26 

4000 rpm (4880 g) for 30 min and were then aseptically transferred to a 27 

sucrose- and P-free equivalent nutrient solution and grown for a further 48 h 28 
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under the same conditions to deplete the phosphorus in MBM before use for 1 

further experiments.  2 

Preparation of MBM amended with organic phosphorus sources and 3 

uranium 4 

One batch of yeast cells in the stationary growth phase was harvested by 5 

centrifugation at 4000 rpm (4880 g) for 30 min and then aseptically transferred 6 

to and grown in MBM substituting 30 mM glycerol 2-phosphate disodium salt 7 

hydrate (C3H7Na2O6P.xH2O (G2P)) or 5 mM phytic acid sodium salt hydrate 8 

(C6H18O24P6.xNa+.yH2O (PyA)) for KH2PO4 as the sole phosphorus source. 9 

Test yeast strains were grown in three different media (MBM with 30 mM G2P, 10 

MBM with 5 mM PyA and MBM without any phosphorus source as a control) to 11 

examine uranium biomineral formation in yeasts pre-grown in the presence of 12 

source of organic phosphorus and then exposed to UO2(NO3)2. All yeast 13 

strains were grown at 30°C in 250-ml flasks containing 100 ml MBM on an 14 

orbital shaking incubator at 180 rpm for 120 h in the dark. All phosphorus 15 

sources were separately sterilized by membrane filtration (cellulose nitrate, 0.2 16 

µm pore diameter, Whatman, Maidstone, Kent, UK) and added to autoclaved 17 

MBM medium (121°C, 15 min) at room temperature, to give a final 18 

concentration of 30 mM G2P or 5 mM PyA. MBM without any phosphorus 19 

source was the control and uninoculated medium served as an abiotic control 20 

for each set of experiments. The organic phosphorus substrates produced no 21 

significant precipitation on reaction with uranyl nitrate in the absence of yeasts.   22 

To examine uranium biomineral formation in cultures growing in the presence 23 

of uranium, another batch of yeast cells in the stationary growth phase at 96 h 24 

were harvested by centrifugation at 4000 rpm (4880 g) for 30 min and then 25 

aseptically transferred to and grown in MBM amended with 0.2 or 1 mM 26 

UO2(NO3)2 and 30 mM G2P or 5 mM PyA as sole phosphorus sources in 27 

250-ml conical flasks containing 100 ml nutrient medium on an orbital shaking 28 
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incubator at 180 rpm at 30°C in the dark. UO2(NO3)2, G2P and PyA were 1 

dissolved separately in Milli-Q water and sterilized by membrane filtration 2 

(cellulose nitrate, 0.2 µm pore diameter, Whatman, Maidstone, Kent, UK) and 3 

added to autoclaved MBM (121oC, 15 min) at room temperature, to give 0.2 or 4 

1 mM UO2(NO3)2, 30 mM G2P and 5 mM PyA final concentrations. MBM 5 

amended with 0.2 or 1 mM UO2(NO3)2 without any phosphorus source was the 6 

control and uninoculated medium served as an abiotic control for each set of 7 

experiments.  8 

Growth rate, inorganic phosphate (Pi) release, tolerance indices (TI), and 9 

pH analysis  10 

To examine the effect of uranium on phosphatase activity when grown with an 11 

organic phosphorus source, yeast growth was measured by optical density 12 

(OD) at 595 nm using a spectrophotometer (Anthos 2001 microplate reader) 13 

over 120 h culture in 0.2 or 1 mM UO2(NO3)2-containing MBM amended with 14 

G2P or PyA. Calculations were carried out using the Windows-based control 15 

and evaluation software for Rosys Anthos microplate readers (Anthos Labtec 16 

Instruments, Wals, Austria). Background OD595 was determined by 17 

spectrophotometric measurement of uninoculated wells.  18 

Inorganic phosphate (Pi) release into the medium during growth in 0.2 or 1 mM 19 

UO2(NO3)2 containing MBM amended with G2P or PyA was determined 20 

spectrophotometrically using the malachite green assay (Irving and 21 

McLaughlin, 1990). 15 µl aliquots of supernatant were sterilized by membrane 22 

filtration (cellulose nitrate, 0.2 µm pore diameter, Whatman, Maidstone, Kent, 23 

UK), and added to each well, in a 96-well plate, with 185 µl Milli-Q water, 24 

followed by the addition of 100 µl malachite green reagent and left for 15 min 25 

after mixing. The absorbance at 620 nm was read on an Anthos 2001 26 

microplate reader, and calculations were carried out as described above. For 27 

the malachite green background comparison, 200 μl Milli-Q water was mixed 28 
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with 100 µl malachite green reagent standard in the 96-well plate giving a final 1 

volume of 300 μl. After incubating the plate for 15 min, the absorbance at 620 2 

nm was processed the same way as the inoculated wells. All experiments 3 

were conducted at least in triplicate. 4 

To assess uranium tolerance, test yeast species were grown in MBM amended 5 

with 0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA as sole phosphorus 6 

source in 250-ml conical flasks containing 100 ml medium on an orbital 7 

shaking incubator at 180 rpm at 30°C in the dark. Yeast biomass was 8 

harvested at appropriate time intervals by centrifugation at 4000 rpm (4880 g) 9 

for 30 min. Biomass dry weights were used to obtain a tolerance index (TI) and 10 

the supernatant analysed for changes in pH. Metal tolerance was evaluated 11 

using a TI as follows: (dry weight of uranium-exposed biomass/dry weight of 12 

control biomass x 100%) (Wei et al. 2013; Liang et al. 2015a,b). For dry weight 13 

determination, biomass was harvested, washed three-times with 0.1 M NaCl, 14 

and dried to constant weight in a vacuum desiccator at room temperature for at 15 

least 30 days, and then ground to a powder using a pestle and mortar (Milton 16 

Brook, Dorset, UK). Supernatants were obtained by membrane filtration (0.45 17 

µm pore diameter, Whatman, Maidstone, Kent, UK). The pH of supernatants 18 

was measured using a pH 210 Microprocessor pH Meter (Hanna Instruments, 19 

Woonsocket, RI, USA). All experiments were conducted at least in triplicate. 20 

Analysis of biominerals produced by yeast 21 

To investigate uranium bioprecipitation by yeast cell suspensions after 22 

pre-growth with organic phosphorus sources, test yeast cells were harvested 23 

from 30 mM G2P or 5 mM PyA amended MBM after 120 h by centrifugation at 24 

4000 rpm (4880 g) for 30 min and washed three times with 0.1 M NaCl. 50 mg 25 

(wet weight) of harvested yeast cells were transferred into 2 ml microcentrifuge 26 

tubes (Starlab, Hamburg, Germany) to which 1 ml of 1 mM UO2(NO3)2 solution 27 

was added. Duplicate samples were incubated for 48 h at 30°C. After this time, 28 
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samples were centrifuged at 4000 rpm (4880 g) for 20 min, washed three times 1 

with 0.1 M NaCl, and then dried in a vacuum desiccator at room temperature 2 

for at least 30 days. The elemental composition of crystals precipitated on 3 

yeast cell surfaces was analysed using a JEOL JSM-T300 SEM system 4 

equipped with a Princeton Gamma Tech EDX microanalysis spectrometer 5 

(Princeton Gamma-Tech Inc., Princeton, NJ, USA). For scanning electron 6 

microscopy (SEM), yeast cells mounted on stubs were sputter coated for 5 min 7 

with gold and palladium (30 nm) using a Cressington 208HR sputter coater 8 

(Ted Pella, Inc., Redding, CA, USA). Specimens were examined using an 9 

environmental scanning electron microscope (ESEM) (Hitachi s-4700) (Hitachi 10 

Ltd, Tokyo, Japan) operating at an accelerating voltage of 15 kV.  11 

Secondary mineral formation on yeast cell walls after growth in media 12 

containing different concentrations of uranium and G2P or PyA was examined 13 

similarly after harvesting by centrifugation at 4000 rpm (4880 g) for 30 min. 14 

Biomass and supernatant were separated, and cells were dried in a vacuum 15 

desiccator at room temperature prior to examination by SEM as described 16 

above. Uncoated samples were examined for elemental composition using 17 

energy-dispersive X-ray analysis (EDXA) before Au/Pd coating the samples in 18 

order to exclude the Au/Pd peak which overlaps P/Cl peaks. Spectra were 19 

acquired using a Phoenix EDXA (EDAX Inc., Mahwah, NJ, USA) analysis 20 

system embedded within the environmental scanning electron microscope 21 

(ESEM) (Philips XL30 ESEM FEG) (FEI Company, Hillsboro, USA) operating 22 

at an accelerating voltage of 20 kV. 23 

The mineralogy of the biominerals was determined using a Hiltonbrooks X-ray 24 

diffractometer (XRD) (HiltonBrooks Ltd., Crewe, UK) fitted with a 25 

monochromatic CuKα source and curved graphite, single Seiko crystal 26 

chronometer (30 mA, 40 kV). The finely ground samples obtained were firmly 27 

compacted on the reverse side of an aluminium 15 x 20 x 2 mm3 specimen 28 

holder, later held against a clean glass side. After compaction, the minerals 29 
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stay firm on the back cover of the specimen holder, which was then snapped 1 

into place and the glass side removed from the holder. Duplicate samples 2 

were analysed over the range 3-60° 2-θ at a scan rate of one degree/min in 0.1 3 

degree increments.  4 

Statistical analysis 5 

All data presented are the means of at least three replicates and error bars 6 

represent one standard error either side of the mean. SigmaPlot, version 12.5, 7 

was used to perform statistical analyses. One-way ANOVA tests on means 8 

were performed for dry weight, the malachite green Pi assay, pH and growth 9 

rate measurements. 10 

11 
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Results 1 

Effect of uranium on yeast growth and Pi released in MBM amended with 2 

G2P or PyA 3 

The optical density after growth of yeasts for 120 h in MBM amended with 0.2 4 

or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA is shown in Table 1. Most of 5 

the test yeasts showed some ability to grow in uranium-amended media 6 

except for C. sake, C. argentea and P. acaciae in the present of PyA (Table 1). 7 

Growth of the yeasts was affected by the presence of 0.2 and 1 mM 8 

UO2(NO3)2 in MBM amended with G2P or PyA (Table 1). The optical density 9 

was reduced compared to that of cells grown in U-free media, and the higher 10 

the concentration of U, the lower the extent of yeast growth (Table 1). Growth 11 

in U and organic phosphorus amended medium showed a reduction in cell 12 

yield and the inhibitory effect with PyA was greater than that with G2P (Table 13 

1). The optical densities of the test strains were mostly higher than 1.0 in the 14 

presence of 0.2 mM UO2(NO3)2 in MBM amended with 30 mM G2P, while in 5 15 

mM PyA amended MBM, the optical densities dropped below 1.0 in the 16 

presence of uranium. The presence of 0.2 and 1 mM UO2(NO3)2 in 5 mM PyA 17 

MBM exerted strong inhibition of C. sake, P. acaciae and C. argentea (Table 18 

1). 19 

The Pi released into the medium after yeast growth for 120 h in MBM amended 20 

with 0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA is shown in Table 2. 21 

The fraction of Pi released was reduced compared to that of cells grown in 22 

uranium-free medium, and the higher the concentration of uranium in the 23 

medium, the lower was the fraction of Pi released (Table 2). More than 50% of 24 

Pi was released in 30 mM G2P medium after exposure of cells to medium 25 

containing 0.2 mM UO2(NO3)2 except for P. acaciae (Table 2). A lower 26 

proportion of Pi was released in 5 mM PyA medium in the presence or 27 

absence of U in most of the test yeasts with ~ 10 - 39% Pi being released 28 

(Table 2). 29 
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Medium pH values and tolerance indices of yeast strains grown in MBM 1 

amended with uranium and G2P or PyA 2 

After growth of the yeasts, the pH of MBM amended with 30 mM G2P or 5 mM 3 

PyA with or without 0.2 or 1 mM UO2(NO3)2 varied between different yeast 4 

species and U concentrations (Table 3). In the absence of uranium, the initial 5 

pH of control medium amended with 30 mM G2P or 5 mM PyA were pH 6.9 6 

and pH 3.8 respectively. The pH of the medium dropped after inoculation of 7 

yeast species from pH 6.9 to around pH 5.5 in medium amended with 30 mM 8 

G2P, and from pH 3.8 to around pH 3 in 5 mM PyA, except for C. sake (pH 3.8) 9 

in the present of PyA. The changes in pH were similar when MBM was 10 

amended with UO2(NO3)2, falling to around pH 5.7 for 0.2 mM UO2(NO3)2, and 11 

around pH 5.5 for 1 mM UO2(NO3)2 except for P. acaciae (pH 5.8) and C. sake 12 

(pH 7.1) with 0.2 mM UO2(NO3)2, and C. sake (pH 5.7) and C. podzolicus (pH 13 

5.6) with 1 mM UO2(NO3)2 (Table 3). In the presence of 5 mM PyA, the pH 14 

dropped from pH 3.5, as in the control, to pH 3.2 after inoculation with yeasts 15 

while for 1 mM UO2(NO3)2, the pH dropped from pH 3.5 to around pH 3 for 16 

most of the test yeasts except for C. sake (pH 3.5) and P. acaciae (pH 3.2) 17 

with 0.2 mM UO2(NO3)2 and C. sake (pH 3.4) with 1 mM UO2(NO3)2 (Table 3). 18 

Tolerance indices (TI) were used to compare biomass yields of all test yeast 19 

species grown in MBM with or without 0.2 and 1 mM UO2(NO3)2 and 30 mM 20 

G2P or 5 mM PyA (Table 4). A TI value < 100% indicates growth inhibition, 21 

while a TI > 100% indicates growth stimulation. All biomass yields of the test 22 

yeast species were reduced in the presence of uranium at both concentrations. 23 

The TI values varied among species and between different uranium 24 

concentrations. In the presence of 0.2 mM UO2(NO3)2, TI values showed less 25 

reduction in MBM amended with 30 mM G2P or 5 mM PyA, with most TI 26 

values over 70%. However, growth of P. acaciae and C. podzolicus was 27 

inhibited in the presence of 1 mM UO2(NO3)2 in MBM amended with 5 mM PyA, 28 

with TI values of 54.5% and 57.1% respectively. Since negligible growth was 29 
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observed in MBM amended with 5 mM PyA, TI values for C. sake were 1 

negligible (Table 4). In the presence of 1 mM UO2(NO3)2 in MBM amended 2 

with 30 mM G2P, C. sake and C. argentea showed TI values of 61.5% and 3 

53.3% respectively (Table 4).   4 

Bioprecipitation of uranium by yeast biomass harvested from organic 5 

phosphorus-amended MBM after reaction with UO2(NO3)2  6 

Most test yeasts previously grown in organic P-amended medium showed 7 

uranium bioprecipitation when subsequently reacted with 1 mM UO2(NO3)2 8 

(Fig.1-2B,E,H). Compared to the large amounts of precipitation found on C. 9 

podzolicus (Fig.1H), C. sake (Fig.2B) and K. lactis (Fig.2E) pre-grown in 10 

G2P-amended MBM, other yeast strains showed relatively poor abilities in 11 

precipitating uranium biominerals, and only a minor proportion of the 12 

population exhibited electron-dense precipitation. After growth in PyA, P. 13 

acaciae precipitated abundant biominerals on the cell walls. Little precipitation 14 

was observed on C. podzolicus grown in PyA-amended MBM after mixture 15 

with 1 mM UO2(NO3)2 (data not shown). SEM revealed the presence of 16 

electron-dense clusters with distinct crystalline shapes on the surface of some 17 

of the yeast species in the early stages of growth. Large electron-dense 18 

deposits were observed on the yeast cells after longer reaction times (Fig.1-2 19 

B,E,H).  20 

Formation of uranium-containing secondary minerals by yeasts grown in 21 

MBM amended with uranium and G2P or PyA 22 

Most test yeasts showed uranium bioprecipitation when grown in G2P or 23 

PyA-amended media with 0.2 or 1 mM UO2(NO3)2 (Fig.1C,F,I). C. sake hardly 24 

grew in PyA amended MBM and therefore mineral precipitation was not 25 

observed. Compared to the large amount of precipitation found with C. 26 

podzolicus grown in G2P-amended MBM with UO2(NO3)2 (Fig.1I), only a small 27 

amount of precipitation occurred when grown in PyA amended MBM with 0.2 28 
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or 1 mM UO2(NO3)2. Precipitation occurred in varying amounts with the various 1 

P sources with the different yeast species (Fig. 1-2). Differences were found 2 

between the secondary minerals precipitated in these growth experiments to 3 

the previous experiments where pre-grown control cells were reacted with 4 

UO2(NO3)2 solutions, regarding their morphologies and the occurrence of 5 

nanoscale particles.  6 

Energy-dispersive X-ray analysis (EDXA) of uranium-containing 7 

secondary minerals  8 

Energy-dispersive X-ray analysis (EDXA) revealed the elemental composition 9 

of the secondary minerals formed by yeast cells harvested from G2P or PyA 10 

amended MBM and then reacted with UO2(NO3)2, and yeasts grown in 11 

uranium-amended MBM with G2P or PyA. Control yeast cells from MBM 12 

amended with G2P showed carbon, oxygen, sodium and phosphorus as the 13 

main elements with occasional detection of sulfur and magnesium. The 14 

minerals precipitated on yeast cells grown with an organic phosphorus source 15 

and then reacted with uranium nitrate, showed carbon, oxygen, phosphorus 16 

and uranium as the main elements and sometimes sodium and potassium 17 

(Table 5). The minerals formed with yeasts grown in uranium-G2P or PyA 18 

amended MBM showed carbon, oxygen, phosphorus and uranium as the main 19 

elements detected and sometimes aluminium and sulfur (Table 5). Most of the 20 

uranium-containing minerals precipitated on the yeast cells shared similar 21 

crystalline morphologies.  22 

X-ray diffraction (XRD) of minerals produced after yeast growth 23 

XRD showed the formation of metaankileite (K2(UO2)2(PO4)2.6(H2O)), 24 

chernikovite ((H3O)2(UO2)2(PO4)2.6(H2O)), bassetite 25 

(Fe++(UO2)2(PO4)2.8(H2O)), and uramphite ((NH4)(UO2)(PO4).3(H2O)) in MBM 26 

amended with 1 mM UO2(NO3)2 and 30 mM G2P after yeast growth (Fig. 3-4). 27 

All of these minerals are uranium- and phosphorus-containing minerals. 28 
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Metaankileite and chernikovite were found with all yeast species (Fig. 3-4). 1 

Uramphite was found in most of the yeasts except C. podzolicus (Fig. 3-4). 2 

Bassetite only appeared in MBM amended with UO2(NO3)2 and G2P after 3 

growth of C. argentea and K. lactis. Metaankileite and chernikovite were the 4 

only minerals found in MBM amended with UO2(NO3)2 and G2P after growth of 5 

C. podzolicus (Fig. 4). 6 

7 
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Discussion 1 

Uranium bioimmobilization by yeasts has been widely studied, with sorption of 2 

uranium species to cell surfaces as the first step and subsequent uranium 3 

precipitation through complexation with various anions present in the system 4 

(Langmuir 1978; Panak et al. 2000; Haas et al. 2001; Francis et al. 2004). 5 

Uranium complexation with both organic and inorganic substrates may reduce 6 

uranium toxicity (Newsome et al. 2014). Previous research has shown the 7 

formation of surface complexes of uranium carbonate and uranium phosphate 8 

as a result of uranium sorption by Shewanella putrefaciens (Haas et al. 2001). 9 

Under calcium-rich conditions, thermodynamic modelling revealed that uranyl 10 

carbonates, calcium uranium carbonates and uranyl hydroxides can also form 11 

stable cell surface complexes on Bacillus subtilis (Gorman-Lewis et al. 2005). 12 

The formation of H-autunite by a Citrobacter sp., inner-sphere uranium 13 

complexes with phosphate groups in a Bacillus sp. and formation of 14 

needle-like fibrils of uranium-containing minerals in S. cerevisiae have also 15 

demonstrated the capacity for uranium precipitation by various 16 

microorganisms (Yong and Macaskie 1995; Volesky and May-Philips 1995; 17 

Macaskie et al. 1992; 1994; 2000; Panak et al. 2000; Ohnuki et al. 2005). SEM 18 

observations of yeast cells grown in MBM containing a source of organic 19 

phosphorus after subsequent exposure to a uranium nitrate solution showed 20 

that the resulting uranium-containing minerals mainly accumulated on cell 21 

surfaces. Such uranium phosphate precipitation may be mediated by both 22 

electrostatic forces and binding to sites such as carboxylic and phosphate 23 

groups (Gorman-Lewis et al. 2005) as well as phosphatase-mediated uranium 24 

biomineralization, phosphatase activities releasing free phosphate (Pi) from 25 

the organic P source which precipitates with soluble uranium species as a 26 

uranium phosphate (Macaskie et al. 1992; 2000).    27 

The presence of cell surface-associated uranium phosphate precipitation 28 

suggested that the phosphatase activity that mediated cell-associated uranium 29 
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precipitation was located at the cell periphery. Previous research has 1 

demonstrated that PhoY and phytase (CCNA-01353) in Caulobacter 2 

crescentus (Yung and Jiao 2014; Yung et al. 2014), and PhoK (alkaline 3 

phosphatase) in Sphingomonas sp. BSAR-1 were responsible for mediating 4 

uranium biomineralization (Nilgiriwala et al. 2008). Therefore, the uranium 5 

bioprecipitation process not only depends on uranium sorption, but also the 6 

release of free phosphate (Pi) as a result of phosphatase activity (Macaskie et 7 

al. 1992; 2000; Yong and Macaskie 1995; Martinez et al. 2007). Furthermore, 8 

mineral precipitation is also influenced by the presence of other metal cations 9 

(Murphy et al. 1989). Thus, it seems the organic phosphorus sources added to 10 

the medium were hydrolysed by phosphatase activity and UO2
2+ associated 11 

with the cell surface could react immediately with the liberated Pi. That more 12 

secondary minerals were precipitated on yeast cell surfaces after growth in 13 

media with G2P rather than PyA may be the result of PyA requiring a specific 14 

phytase for hydrolysis while G2P can be hydrolysed by a range of 15 

phosphatase enzymes. Concentrations of Pi released by the yeasts from G2P 16 

or PyA were higher in the absence than in the presence of uranium. This may 17 

be due to growth inhibition in the presence of uranium as well as the formation 18 

of uranium-containing minerals, the released Pi being consumed by the 19 

formation of the uranium phosphates. The morphology of the minerals 20 

precipitated on the yeast cell walls was variable and this can be influenced by 21 

many factors, such as the presence of other metal cations, pH and solubility of 22 

different mineral species. The formation of uranium phosphate minerals has 23 

been considered to be a more durable process than uranium biosorption since 24 

insoluble minerals can remain in an insoluble state even after cell lysis (Ohnuki 25 

et al. 2005).  26 

This work has demonstrated the ability of several yeast species to mediate 27 

U(VI) biomineralization through uranium phosphate biomineral formation via 28 

phosphatase activity in the presence of an organic phosphorus source as sole 29 
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source of phosphorus. Uranium- and phosphate-containing bioprecipitation 1 

was detected on the surfaces of yeast cells after interaction with uranium and 2 

the minerals metaankoleite, chernikovite, bassetite and uramphite were 3 

confirmed by X-ray diffraction (Fig. 3-4). This work has demonstrated the 4 

potential of yeasts in the utilization of organic phosphate sources for 5 

transformation of soluble metal species into insoluble minerals via 6 

phosphatase-mediated bioprecipitation.  7 

 8 
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Table 1. Growth of test yeasts in MBM containing 0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA as sole P source. 

 

Optical density at 595 nm 

30 mM G2P 

30 mM G2P + 0.2 

mM UO2(NO3)2 

30 mM G2P + 1 

mM UO2(NO3)2 5 mM PyA 

5 mM PyA + 0.2 

mM UO2(NO3)2 

5 mM PyA + 1 

mM UO2(NO3)2 

C. sake 1.67 1.11 0.65 0.21 0.13 0.1 

P. acaciae 2.07 1.04 0.79 0.65 0.21 0.17 

K. lactis 2.03 1.41 1.24 1.06 0.55 0.43 

C. filicatus 1.98 1.63 1.55 1.72 0.89 0.78 

C. podzolicus 2.01 1.14 0.78 1.85 0.65 0.55 

C. argentea 1.79 1.32 0.98 0.42 0.22 0.19 

The optical densities of yeast culture were measured at 595 nm after 120 h growth in MBM amended with G2P or PyA, and 

UO2(NO3)2 at 30°C in the dark at 180 rpm. The initial OD595 of the yeast suspension was approximately 0.1. Measurements are the 

means of at least three replicate measurements with typical relative standard deviations of about 5%. 
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Table 2. Fraction of Pi (%) released into the medium by the test yeasts after 120 h growth in MBM amended with 30 mM G2P or 5 

mM PyA and containing 0.2 or 1 mM UO2(NO3)2.  

 

Fraction of Pi (%) released  

30 mM G2P + 0.2 mM 

UO2(NO3)2 

30 mM G2P + 1 mM 

UO2(NO3)2 

5 mM PyA + 0.2 mM 

UO2(NO3)2 

5 mM PyA + 0.2 mM 

UO2(NO3)2 

C. sake  70.1 50.6 -- -- 

P. acaciae  39.2 26.4 13.2 10.9 

K. lactis  63.2 46.1 19.3 13.2 

C. filicatus  54.6 48.1 29.6 22.1 

C. podzolicus  60 55.3 39.4 28.6 

C. argentea  62.4 45.6 19.6 15.6 

Yeasts were grown for 120 h at 30°C in the dark at 180 rpm. Pi released was quantified using the malachite green assay. 

Measurements are the means of at least three replicate measurements with typical relative standard deviations of about 5%. 



28 
 

Table 3. pH of media after growth of yeast strains in MBM amended with 0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA. 

 

pH value 

30 mM G2P 
30 mM G2P + 0.2 

mM UO2(NO3)2 

30 mM G2P + 1 

mM UO2(NO3)2 
5 mM PyA 

5 mM PyA + 0.2 

mM UO2(NO3)2 

5 mM PyA + 1 

mM UO2(NO3)2 

Uninoculated 

control 
6.9 6.8 7 3.8 3.5 3.5 

C. sake 5.6 7.1 5.7 3.8 3.5 3.4 

P. acaciae 5.5 5.8 5.5 3.1 3.2 3 

K. lactis 5.5 5.7 5.5 3 3.3 3 

C. filicatus 5.5 5.8 5.5 3 3.3 3 

C. podzolicus 5.6 5.8 5.6 3 3.2 3 

C. argentea 5.5 5.7 5.6 3.1 3.2 3 

pH measurements were taken after 120 h incubation at 30°C in the dark on an orbital shaking incubator at 180 rpm. All values shown 

are means of at least three measurements with typical relative standard deviations of about 5%. 
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Table 4. Tolerance indices (TI), expressed as a percentage, of yeast species grown in MBM amended with 0.2 or 1 mM UO2(NO3)2 

and 30 mM G2P or 5 mM PyA. 

 

TI (%) 

30 mM G2P + 0.2 mM 

UO2(NO3)2 

30 mM G2P + 1 mM 

UO2(NO3)2 

5 mM PyA + 0.2 mM 

UO2(NO3)2 

5 mM PyA + 0.2 mM 

UO2(NO3)2 

C. sake  76.9 61.5 ND ND 

P. acaciae  94.1 82.3 81.8 54.5 

K. lactis  87.5 75 85.7 71.4 

C. filicatus  88.9 77.8 99.7 80 

C. podzolicus  87.5 81.3 90.5 57.1 

C. argentea  93.3 53.3 88.9 66.7 

Values shown are tolerance indices derived from the biomass dry weight of yeast grown in the absence or presence of uranium for 

120 h at 30°C in the dark on an orbital shaker at 180 rpm. The mean biomass dry weights of yeasts per 100 ml grown in MBM 

amended with 30 mM G2P in the absence of uranium were: C. sake, 130 mg; P. acaciae, 170 mg; K. lactis, 160 mg; C. filicatus, 170 

mg; C. podzolicus, 140 mg; C. argentea, 140 mg. The biomass dry weights of yeasts per 100 ml grown in MBM amended with 5 mM 

PyA in the absence of uranium were: C. sake, 20 mg; P. acaciae, 220 mg; K. lactis, 100 mg; C. filicatus, 150 mg; C. podzolicus, 210 

mg; C. argentea, 80 mg. All values shown are percentages derived by comparison with the mean control biomass yields. ND = not 

detectable. Averages from three measurements are shown with typical relative standard deviations of about 5%.
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Table 5. Elemental and mineralogical composition of the biominerals produced by the yeast species grown in MBM amended with 

0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA. 

  

Elemental (EDXA) and mineralogical composition (XRD) 

30 mM G2P + 0.2 mM 

UO2(NO3)2 

30 mM G2P + 1 mM 

UO2(NO3)2 

5 mM PyA + 0.2 mM 

UO2(NO3)2 

5 mM PyA + 1 mM 

UO2(NO3)2 

C. sake 
EDXA C, O, P, S, U C, O, Al, P, S, U C, O, Na, P, U C, O, P, U 

XRD Metaankoleite, Chernikovite, Uramphite 

P. acaciae 
EDXA C, O, P, S, U, K C, O, Al, P, S, U C, O, P, U C, O, Na, P, U 

XRD Metaankoleite, Chernikovite, Uramphite 

K. lactis 
EDXA C, O, Al, P, S, U C, O, Al, P, S, U C, O, P, U, K C, O, P, U 

XRD Metaankoleite, Chernikovite, Bassetite, Uramphite 

C. filicatus 
EDXA C, O, Al, P, S, U C, O, Al, P, U C, O, P, U C, O, P, U 

XRD Metaankoleite, Chernikovite, Uramphite 

C. podzolicus 
EDXA C, O, Al, P, S, U C, O, Al, P, U C, O, P, U, K C, O, P, U 

XRD Metaankoleite, Chernikovite 

C. argentea 
EDXA C, O, P, S, U, K C, O, Al, P, S, U C, O, P, U C, O, P, U 

XRD Metaankoleite, Chernikovite, Bassetite, Uramphite 
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EDXA and XRD were carried out on samples obtained after 120 h growth of the yeasts at 30°C on an orbital shaker at 180 rpm in 

the dark in 0.2 or 1 mM UO2(NO3)2 and 30 mM G2P or 5 mM PyA-amended MBM medium. Typical analyses are shown from one of 

at least three determinations. 
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Legend to figures 

Fig. 1. Scanning electron microscopy of uranium-containing biominerals 

produced by Candida argentea, Cryptococcus filicatus and 

Cryptococcus podzolicus  

To examine U biomineral formation in yeasts pre-grown in the presence of a 

source of organic phosphorus and then exposed to UO2(NO3)2, Candida 

argentea, Cryptococcus filicatus and Cryptococcus podzolicus were grown in 

30 mM G2P-amended MBM, harvested after 120 h and then mixed with (A,D,G) 

Milli-Q water or (B,E,H) 1 mM UO2(NO3)2. In another experiment to examine U 

biomineral formation in cultures growing in the presence of uranium, C. 

argentea, C. filicatus and C. podzolicus were grown in (C,F,I) 1 mM 

UO2(NO3)2-amended MBM with 30 mM G2P at 30°C at 180 rpm in the dark 

and harvested after 120 h. (A) C. argentea grown in MBM amended with 30 

mM G2P, scale bar = 4 µm. (B) Uranium precipitates on C. argentea harvested 

from MBM amended with 30 mM G2P after reaction with 1 mM UO2(NO3)2, 

scale bar = 5 µm. (C) Uranium precipitates on C. argentea harvested from 1 

mM UO2(NO3)2 MBM amended with 30 mM G2P, scale bar = 2 µm. (D) C. 

filicatus grown in MBM amended with 30 mM G2P, scale bar = 5 µm. (E) 

Uranium precipitates on C. filicatus harvested from MBM amended with 30 mM 

G2P after reaction with 1 mM UO2(NO3)2, scale bar = 1 µm. (F) Uranium 

precipitates on C. filicatus harvested from 1 mM UO2(NO3)2 MBM amended 

with 30 mM G2P, scale bar = 3 µm. (G) C. podzolicus grown in MBM amended 

with 30 mM G2P, scale bar = 5 µm. (H) Uranium precipitates on C. podzolicus 

harvested from MBM amended with 30 mM G2P after reaction with 1 mM 

UO2(NO3)2, scale bar = 5 µm. (I) Uranium precipitates on C. podzolicus 

harvested from 1 mM UO2(NO3)2 MBM amended with 30 mM G2P, scale bar = 

2 µm. Typical images are shown from several examinations.  
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Fig. 2. Scanning electron microscopy of uranium-containing biominerals 

produced by Candida sake, Kluyveromyces lactis and Pichia acaciae  

To examine U biomineral formation in yeasts pre-grown in the presence of a 

source of organic phosphorus and then exposed to UO2(NO3)2, Candida sake, 

Kluyveromyces lactis and Pichia acaciae were grown in 30 mM G2P-amended 

MBM, harvested after 120 h and then mixed with (A,D,G) Milli-Q water or 

(B,E,H) 1 mM UO2(NO3)2. In another experiment to examine U biomineral 

formation in cultures growing in the presence of uranium, C. sake, K. lactis and 

P. acaciae were grown in (C,F,I) 1 mM UO2(NO3)2-amended MBM with 30 mM 

G2P at 30°C at 180 rpm in the dark and harvested after 120 h. (A) C. sake 

grown in MBM amended with 30 mM G2P, scale bar = 5 µm. (B) Uranium 

precipitates on C. sake harvested from MBM amended with 30 mM G2P after 

reaction with 1 mM UO2(NO3)2, scale bar = 4 µm. (C) Uranium precipitates on 

C. sake harvested from 1 mM UO2(NO3)2 MBM amended with 30 mM G2P, 

scale bar = 500 nm. (D) K. lactis grown in MBM amended with 30 mM G2P, 

scale bar = 5 µm. (E) Uranium precipitates on K. lactis harvested from MBM 

amended with 30 mM G2P after reaction with 1 mM UO2(NO3)2, scale bar = 5 

µm. (F) Uranium precipitates on K. lactis harvested from 1 mM UO2(NO3)2 

MBM amended with 30 mM G2P, scale bar = 3 µm. (G) P. acaciae grown in 

MBM amended with 30 mM G2P, scale bar = 5 µm. (H) Uranium precipitates 

on P. acaciae harvested from MBM amended with 30 mM G2P after reaction 

with 1 mM UO2(NO3)2, scale bar = 3 µm. (I) Uranium precipitates on P. acaciae 

harvested from 1 mM UO2(NO3)2 MBM amended with 30 mM G2P, scale bar = 

2 µm. Typical images are shown from several examinations.  

 

Fig. 3. X-ray diffraction of biominerals precipitated by Cryptococcus 

filicatus, Kluyveromyces lactis and Pichia acaciae 
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Diffraction patterns were collected from mineral particulates harvested from 30 

mM C3H7Na2O6P.xH2O-amended MBM containing 1 mM UO2(NO3)2 after 120 

h growth of (A) C. filicatus (B) K. lactis and (C) P. acacia at 30°C at 180 rpm in 

the dark. Patterns for dominant mineralogical components are shown. Typical 

diffraction patterns are shown from one of several determinations.  

 

Fig. 4. X-ray diffraction of biominerals precipitated by Candida argentea, 

Candida sake and Cryptococcus podzolicus  

Diffraction patterns were collected from mineral particulates harvested from 30 

mM C3H7Na2O6P.xH2O-amended MBM containing 1 mM UO2(NO3)2 after 120 

h growth of (A) C. argentea (B) C. sake and (C) C. podzolicus at 30°C at 180 

rpm in the dark. Patterns for dominant mineralogical components are shown. 

Typical diffraction patterns are shown from one of several determinations.  

 

 


