197 research outputs found
Orbital quantization in the high magnetic field state of a charge-density-wave system
A superposition of the Pauli and orbital coupling of a high magnetic field to
charge carriers in a charge-density-wave (CDW) system is proposed to give rise
to transitions between subphases with quantized values of the CDW wavevector.
By contrast to the purely orbital field-induced density-wave effects which
require a strongly imperfect nesting of the Fermi surface, the new transitions
can occur even if the Fermi surface is well nested at zero field. We suggest
that such transitions are observed in the organic metal
-(BEDT-TTF)KHg(SCN) under a strongly tilted magnetic field.Comment: 14 pages including 4 figure
Electron Exchange Coupling for Single Donor Solid-State Qubits
Inter-valley interference between degenerate conduction band minima has been
shown to lead to oscillations in the exchange energy between neighbouring
phosphorus donor electron states in silicon \cite{Koiller02,Koiller02A}. These
same effects lead to an extreme sensitivity of the exchange energy on the
relative orientation of the donor atoms, an issue of crucial importance in the
construction silicon-based spin quantum computers. In this article we calculate
the donor electron exchange coupling as a function of donor position
incorporating the full Bloch structure of the Kohn-Luttinger electron
wavefunctions. It is found that due to the rapidly oscillating nature of the
terms they produce, the periodic part of the Bloch functions can be safely
ignored in the Heitler-London integrals as was done by Koiller et. al. [Phys.
Rev. Lett. 88,027903(2002),Phys. Rev. B. 66,115201(2002)], significantly
reducing the complexity of calculations.
We address issues of fabrication and calculate the expected exchange coupling
between neighbouring donors that have been implanted into the silicon substrate
using an 15keV ion beam in the so-called 'top down' fabrication scheme for a
Kane solid-state quantum computer. In addition we calculate the exchange
coupling as a function of the voltage bias on control gates used to manipulate
the electron wavefunctions and implement quantum logic operations in the Kane
proposal, and find that these gate biases can be used to both increase and
decrease the magnitude of the exchange coupling between neighbouring donor
electrons. The zero-bias results reconfirm those previously obtained by
Koiller.Comment: 10 Pages, 8 Figures. To appear in Physical Review
Orbital effect of a magnetic field on the low temperature state in the organic metal -(BEDT-TTF)KHg(SCN)
The effect of pressure on the B--T phase diagram of
-(BEDT-TTF)KHg(SCN) is studied. The measured phase lines can be
well described by a recent model of a charge-density wave system with varying
nesting conditions. A remarkable increase of the transition temperature with
magnetic field is found in a certain pressure and field range. We associate
this result with a dramatic enhancement of the orbital effect of magnetic field
due to a deterioration of the nesting conditions by pressure. Furthermore, we
present data which can be interpreted as a first sign of field-induced
charge-density waves.Comment: 9 pages, 5 figure
A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking
Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) < 0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-re
Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23
A comparative view of glacial and periglacial landforms on Earth and Mars
This paper emphasizes the importance of using terrestrial analogues to improve our understanding of the role of ice on Mars through its associated landforms. We discuss terrestrial regions and techniques that can help understand Martian icy environments, and highlight the necessity to explore the Martian cryosphere as the next natural step
Defining new pathways to manage the ongoing emergence of bat rabies in Latin America
Rabies transmitted by common vampire bats (Desmodus rotundus) has been known since the early 1900s but continues to expand geographically and in the range of species and environments affected. In this review, we present current knowledge of the epidemiology and management of rabies in D. rotundus and argue that it can be reasonably considered an emerging public health threat. We identify knowledge gaps related to the landscape determinants of the bat reservoir, reduction in bites on humans and livestock, and social barriers to prevention. We discuss how new technologies including autonomously-spreading vaccines and reproductive suppressants targeting bats might manage both rabies and undesirable growth of D. rotundus populations. Finally, we highlight widespread under-reporting of human and animal mortality and the scarcity of studies that quantify the efficacy of control measures such as bat culling. Collaborations between researchers and managers will be crucial to implement the next generation of rabies management in Latin America
A meta-analysis of gene expression signatures of blood pressure and hypertension
Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension
Cell Specific eQTL Analysis without Sorting Cells
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus
- …