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The case for studying the glacial record of Mars 

The (peri)glacial landforms of Mars record the history of water-surface interactions of the 

last 3.5 Byr. The geological record of Mars is unique among other planetary bodies in the solar 

system, aside from Earth, given the long-term interaction between water and the surface. This 

makes Mars more similar to Earth than any other planetary body and has potentially profound 

implications for the origin and evolution of extraterrestrial life. Whereas early Mars, ~3.9-3.5 Byr 

ago, experienced surface liquid water activity1,2, Mars has remained a frozen planet for most of its 

history.  

The Martian water inventory is largely stored in the form of ice in the polar caps and mid- 

to high- latitudes. Approximately 5 million cubic kilometers of water ice lie currently at or near 

the Martian surface3. The polar caps are the largest reservoir, containing ~22 m Global Equivalent 

water Layer (GEL), followed by at least 7 m GEL contained in ground ice, and ~2.6 m in mid-

latitude shallow buried ice, sequestered in Latitude‐Dependent Mantle (LDM), Lobate Debris 

Aprons (LDA), Lineated Valley Fill (LVF), Concentric Crater Fill (CCF), and Glacier Like Forms 

(GLF)3-5.  

The identification of ice deposits relies heavily on orbital characterization of their surface 

morphologies. Glacial landforms on Mars are produced by the accumulation, motion, and 

deformation of crystalline water ice. They involve relatively recent and on-going accumulations 

in the polar caps, preserved ice deposits in Viscous Flow Features (VFFs) such as LDAs, GLFs, 

CCF, LVF, and relict landforms with no presence of remnant ice. VFF morphology includes 

convex surface profiles, surface sublimation textures, deflation, and lineation patterns related to 

deformation6, and high subsurface radar reflectivity7. Examples of relict landforms include glacial 

valleys8,9, subglacial channels10, moraine-like arcuate ridges and drop moraines11,12, eskers13,14, 

etc. Landforms interpreted to be periglacial in origin are widespread across the mid to high 

latitudes and are associated spatially with other evidence for ground ice. However, this 

interpretation is not unanimous. Processes that shape periglacial landforms include cycles of 

volumetric thermal contraction and expansion of permafrost, including condensation-sublimation 

and possibly freeze-thaw. Patterned ground, such as polygonal terrain and brain terrain15, are often 

cited as evidence of periglacial processes on Mars.  

The type, morphology, distribution, and ice content of (peri)glacial landforms reflect the past 

local and global climate conditions. Climate is a key control on the mass-balance, flow, and 

surface expression of ice in several ways16. For example, the accumulation of snow and its 

transition to crystalline ice requires thousands of years of climate stability during ice accretion and 

preservation17. Temperature, dust content, and ice thickness, all play a major role in shaping the 

deformation textures of ice16. Moraines and trimlines map the previous extent and thickness of ice 

bodies, providing evidence for thicker, more extensive deposits in the past, as well as witnessing 

episodes of glacial advance and retreat. The presence of specific glacial landforms such as 

striations, subglacial channels, and eskers, as well as the detection of hydrated silica in (peri)glacial 

terrains indicate that basal water accumulation occurred18,19, with implications for climate and 

habitability. Similarly, the distribution, mineralogy, and morphology of periglacial landforms 

reflect past climate conditions including ground-surface temperature oscillations, precipitation, lag 

deposit accumulation rate, and water content, but their formation mechanisms are still poorly 

understood.  
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The identification of sites with subsurface ice, with potential for in-situ resource utilization 

of future human missions and of astrobiological interest, relies on the correct interpretation 

of the glacial/periglacial record. In preparation for future human exploration, the identification 

of sites with in-situ resources based on key distinctive landforms is important, in particular, to 

characterize the presence of readily accessible water ice. Although the Shallow Radar (SHARAD) 

is able to provide evidence for the presence of ice and its thickness, its horizontal resolution (0.3-

3 km) prevents a detailed characterization of a specific landing site. Therefore, it is key to 

characterize Martian (peri)glacial morphologies with high-resolution imagery and topographic 

data, and quantitatively relate them to physical aspects such as ice content, depth, distribution and 

spatial extent. Advancing our knowledge regarding the identification, characterization, and 

interpretation of ice-related landforms on Mars will help inform the selection of landing sites for 

future missions targeting the search of life and the human exploration on Mars20. 

Progress to this point 

The identification of (peri)glacial features on Mars started with the early Viking image data13,21. 

Since then, understanding has progressed remarkably thanks to many orbital missions, as well as 

the Phoenix lander, enabling an increasingly better understanding of the spatial and temporal 

characteristics of the Martian cryosphere.  

Glacial features: progress. The identification of ancient, relict glacial landforms (other than the 

polar caps) started from early morphological interpretations of glaciofluvial and alpine glacial 

erosion features13. Similarly, geomorphic studies first hypothesized that VFFs were extant ice 

deposits covered in debris21, later confirmed by SHARAD observations22,23.  Geomorphology also 

aided the characterization of tropical glacial fingerprints11, and the identification of recurrent 

glaciation in the mid- to low- latitudes, providing evidence that obliquity controls the cyclical 

accumulation of a latitude dependent mantle (LDM)12. Recently, scarps exposing buried extant ice 

sheets in the mid-latitudes have been identified, providing evidence of a much more substantial 

glaciation24. Other significant advances include the identification of ancient eskers in the southern 

circumpolar region25,26; the confirmation that the polar caps of Mars contain water ice and are not 

flowing substantially28; the identification of geologically-young eskers in the mid-latitudes14,29; 

and the possible presence of a subglacial lake under the southern polar cap30. Geomorphology has 

aided in the identification of relict and extant glacial landforms, from the poles to the equator, and 

corresponding to various ages. 

Periglacial landforms: progress. Similarly, geomorphological interpretations of periglacial 

landforms first aided in the identification of ground ice on Mars, with later efforts focusing on the 

link between distribution and morphology of patterned ground and buried ice31-33. High resolution 

imagery, gamma ray spectrometry, and thermal inertia data enabled the first quantitative evidence 

of the presence of near-surface ground ice32,33, followed by the in-situ detection of a shallow ice 

table (5-18 cm depth) below polygonal terrain by the Phoenix mission36. Ongoing efforts by the 

SHARAD and MARSIS radar experiments are key to interrogate the distribution and depth of 

subsurface ice deposits37. In combination with geomorphological mapping, significant ice deposits 

have recently been identified in Arcadia and Utopia Planitia40,37,41. The identification of ground 

ice is currently the focus of the Subsurface Water Ice Mapping on Mars (SWIM) team38,39, and is 

a main goal of a future Mars Ice Mapper mission. Additionally, an increasing body of evidence 

from morphological and mineralogical18 studies of potentially relict periglacial landform 
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morphology suggests that liquid water (wet periglaciation) occurred in recent periods of high 

obliquity42,43.   

The case for (peri)glacial comparative geomorphology  

Earth provides a natural laboratory with surface processes comparable to those on Mars, which we 

can access and understand, and then extrapolate to infer characteristics of the Martian climate, 

geology, and water budget. No analogue site on Earth is perfect, however, as conditions such as 

CO2 condensation or sublimation-dominated mass balance can only be captured in laboratories 

and numerical models. By studying ice-related features through planetary and terrestrial analogues, 

high-impact goals can be achieved, such as: 

• Characterizing the morphology and characteristics of ice-related landforms in situ, to relate 

morphology, ice content, distribution, and driving processes using, e.g., geophysical 

techniques (e.g., ground penetrating radar (GPR) and geoelectrical surveys), ice cores, and 

modelling.  (MEPAG goals II and III). 

• Advancing the techniques required for the characterization of ice-related landscapes, which 

will be necessary in future Mars missions to assess the presence, content, depth, and 

distribution of ice. (MEPAG goal IV). 

• Understanding the environmental settings where specific landforms developed in terms of 

climate, lithology, topography, and solar insolation. (MEPAG goal II). 

• Describing and cataloguing (peri)glacial processes, (peri)glacial alteration products, and 

landforms on Earth itself, which will soon degrade and/or thaw under a warming climate. 

• Characterizing the dynamics and landforms attributed to the presence and motion of ice on 

Earth and Mars, which can then be used to help understand the landscape and evolution of 

the surfaces of icy bodies and ocean worlds, including Europa, Enceladus, and even Pluto. 

Suggested sites of interest for analogue research  

Below is a list of sites of special interest for their comparison to Martian environments, including 

a justification in terms of environment, process, preservation, landforms, and astrobiological 

interest (if applicable).  

Polar regions 

Analogue sites in polar areas (above the Arctic circle and below 60°S) offer the most analogous 

terrains for Mars’ (peri)glacial landscapes. Environments are characterized by extremely cold 

temperatures, and either heavy glaciation or hyperarid, polar desert conditions. 

Canadian Arctic Archipelago  

The subdued topography of the sedimentary basins in the high Canadian Arctic provides a unique 

space for (peri)glacial analogue research.  

• Devon Island: Considered an excellent analogue to Mars44, Devon Island features an Arctic 

ice cap43, subdued topography, and a polar desert climate44,46. The island contains extensive 

(peri)glacial landforms, some of them unique, such as relict subglacial channel networks47, 

extensive examples of patterned ground, and analogues to brain terrain48. A hypersaline 
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subglacial lake exists under the Devon ice cap, in a region previously deemed too cold for 

liquid water49. The Haughton-Mars Project (HMP) and the F-MARS project compile 20 

years of analogue investigations, including the characterization of the Haughton impact 

structure and studies of the morphology of meltwater valleys44,45. 

• Axel Heiberg Island: Axel Heiberg Island is characterized by polythermal ice caps, higher 

relief variability than Devon, and sandstone dominated substrates. Axel Heiberg’s 

subglacial channels are potential analogues to some valley networks51, cold and 

polythermal glaciers yield a wide range of glacial landforms, and there is a variety of 

patterned ground. The presence of the Sverdrup Basin flood basalts, as well as extensive 

salt-ice interactions, make Axel Heiberg a mineralogical analogue for glacial chemical 

alteration and astrobiology52. 

Antarctica 

McMurdo Dry Valleys namely Beacon and Mullins valleys: The frigid and extremely hyperarid 

conditions mean that ice sublimation dominates over melt. The region contains examples of 

sublimation-driven patterned ground overlying debris-covered glaciers5, extensive patterned 

ground, and massive ground ice. The debris-covered, cold-based glaciers in Mullins valley contain 

ancient ice (~ 8Myr53) and are good analogues to tropical glaciers in the Arsia Mons region of 

Mars11. Seasonal episodes of ephemeral melt are a promising analogue to capture a ‘cold and icy’ 

early Mars hydrological system, addressing valley network formation from snowmelt54. The 

Asgard range region also preserves relict networks of subglacial channels55, possible analogues to 

some Martian valley networks51. Exposures of the mafic Ferrar dolerite unit, and presence of brines 

(e.g., Don Juan Pond) pose additional interesting mineralogical and astrobiological analogues.  

Scandinavian Arctic 

• Svalbard, Norway: The Svalbard archipelago features moderately warmer and wetter polar 

climate than other polar regions, allowing for higher presence of melt and the development 

of wetter periglacial landforms. 

o Spitsbergen Island exhibits a wide range of (peri)glacial landforms in close spatial 

proximity, including active stone circles, ice-wedge polygons, and pingos56, as well 

as glacial landforms such as eskers, moraines, and meltwater channels. The island 

has well-preserved patterned ground analogues to western Utopia Planitia, Mars57. 

o The Arctic Mars Analog Svalbard Expedition was established to combine the 

investigation of analogue Arctic astrobiology environments with active testing of 

scientific instruments. Payload testing included the CheMin, SAM, PanCam 

(MSR), and the WISDOM and FTIR experiments (Rosalin Franklin rover). 

• Swedish Arctic: The Swedish Arctic features multiple (peri)glacial landforms of interest, 

including thermal contraction polygons, solifluction lobes or thaw slumps, as well as well-

preserved relict erosional remnants of glacial valleys, eskers, and moraines58-60.  

Subarctic and lowland permafrost regions 

Iceland 

Iceland provides a unique analogue setting to study the interactions between a variety of volcanic, 

glacial, and periglacial processes including: 
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• Lava-ice interactions, including records of large subglacial floods (jökulhlaups) triggered 

by volcanic eruptions beneath the Vatnajökull ice cap and surrounding glaciers. 

• Adjacent active and relict rock glaciers in the Tröllaskagi peninsula, allowing for accurate 

direct comparative studies including change monitoring and landform dating. 

• Well-preserved relict patterned ground and polygonal terrain in the Westfjords and 

Highlands, dating to Last Glacial Maximum and Little Ice Age, enable comparative studies 

with active patterned ground sites elsewhere to derive rates of morphologic change61. 

• Eskers in the Breiðamerkurjökull area have similar cross-section to those in Phlegra 

Montes14.  

Northwestern territories, including the Tuktoyaktuk Peninsula 

Tuktoyaktuk peninsula marked the northern boundary of the Laurentide ice sheet. Its subdued 

topography is marked by thousands of pingos, including some of the world's largest. The region 

exhibits massive ground ice, ice wedge polygons, tundra lakes, kettle-lake topography, tunnel 

valleys, subglacial and proglacial channels62, and has been considered a good analogue for possible 

‘wet’ periglacial landforms in Utopia Planitia63. 

Siberia 

Dominantly of subarctic climate, Siberia is arguably one of the best terrestrial analogue sites for 

the study of Martian ground ice64. Permafrost in southern Siberia dates back to 3 Myr, among the 

oldest continuously frozen regions on Earth65. Northern Central Siberia displays some of the 

thickest ground ice deposits in the world (1-1.5 km64). In addition, thermokarst in ice-rich Siberian 

permafrost has been compared to scalloped depressions on Mars66. Examples of subice volcanism 

analogues are also apparent in Tuyas in the Azas Plateau67. 

High mountain environments 

The high relief and presence of active or relict (peri)glaciation, combined with a better 

accessibility, make alpine and plateau environments a desirable analogue to Martian icy terrains.   

Alaska 

Presence of active (peri)glaciation and ice-volcanic interactions such as: 

• Hydromagmatic eruptions through thick permafrost layers in the Seward Peninsula, 

producing kilometer-scale Maars style craters68, and lava-ground ice interactions69. 

• Glacial and periglacial sedimentology variability record obliquity-driven climate change68. 

• More than 200 debris-covered glaciers (DCG), such as the Sourdough glacier located in 

the St. Elias range, used as a Mars analogue70.  

Western US 

Plateaus in the Uinta Mountains of north central Utah support well-preserved relict patterned 

ground dating to the LGM and LIA61,71. Active rock glaciers are found here and extensively in the 

Sierra Nevada, CA.  

 

Western Himalaya 
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Permafrost features on steep slopes in the cold and arid regions in Ladakh and Karakoram 

Himalaya72,73 display unique flow patterns and morphologies. Rock glaciers and ice-debris 

complexes are similarly influenced by the high relief, with distinct deformation patterns.  

Patagonia and Tierra del Fuego (Argentina/ Chile)   

The Patagonia region supports a variety of glacial, glaciovolcanic, and periglacial features of 

interest. In spite of its unique geomorphology, the region still lacks analogue recognition. This 

region features: 

• Geological record of multiple cycles of advance and retreat of glaciers, featuring glacial, 

glaciofluvial and volcanic landforms that originated as early as 7 Myr ago74-77. 

• Large glacial lakes, such as the Argentino and Viedma lakes, including active moraine-

dammed lakes that yield current-day large outburst floods 78,79.  

• Steep topography may capture the dynamics of (peri)glaciation in crater walls51.  

• Debris-covered glaciers, such as the Mt. San Lorenzo (S. Patagonia), with debris deposition 

triggered by tectonic/ mass wasting processes or by intense precipitation. 

• Lateral moraines, drumlins, ribbed moraines, and glaciofluvial landforms appear along the 

Gallegos river valley, several older than 1 Myr and emplaced without basal meltwater80,81. 

Ribbed moraines indicate cold- to wet-based transitions in glacial ice, of interest for Mars.  

Other 

High mountain environments of analogue interest are also identified in the European Alps, 

Carpathians, the Rocky Mountains, etc. Kibo summit of Mt. Kilimanjaro, for example, features a 

hyperarid sublimation environment with cold-based glaciers, of mineralogical interest. Analogue 

terrains in these areas are generally better characterized and more accessible than other sites.  

In-situ characterization of icy terrains: the next natural step 

Quantifying the distribution and volume content of near surface ice is of primary importance to 

allow for In-Situ Resource Utilization (ISRU) for human exploration (MEPAG goal IV). Future 

missions such as the Mars Ice Mapper, as well as recently proposed missions, such as 

COMPASS81, would allow for a detailed characterization of ground ice-atmosphere interactions. 

Going forward, the next necessary and natural step is the in-situ characterization of ice resources83, 

84.  

The techniques in Table 1 are used extensively for the characterization of (peri)glacial terrains on 

Earth. The first three techniques target the characterization of terrain geomorphology, surface 

chemistry, and hydrogen content. The remaining techniques are aimed at interrogating the 

subsurface ice: distribution, volume, stratigraphy, and dust content, the ice-atmosphere exchange, 

and characterizing the surface processes. Ground ice coring and field reconnaissance of analogue 

sites provide observational constraints on the remote investigation84,85. A mission combining all 

these elements, which could be achieved through a combination of an uncrewed aerial vehicle 

(UAV) and a lander or rover, would provide a detailed characterization of the ice content, 

distribution, and depth of an ice deposit on Mars. This has significant implications not only for the 

localization of ice-rich sites and geological characterization of these, but also for ISRU and 

management of water as a resource on the Martian mid-latitudes for future exploration missions. 
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Techniques Platform Target(s) 

Imaging: optical, thermal, 

hyperspectral 
Orbiter - Water content   

- Alteration mineralogy 

Imaging: thermal and optical  

UAV  

- Fine-scale morphology, grain size characterization 

- Landforms & landform evolution 

- high resolution topography Stereo-derived/LiDAR DTM 

Ground penetrating radar (GPR)  

Lander or 

rover 

 

- Subsurface ice content, distribution, depth, volume 

- Ice and dust stratigraphy 

- In-situ reconstruction of ice cores, climate record86  

- Mass-balance and atmospheric exchange 

Micro Computed Tomography 

(CT) 

Meteorological station 

Geoelectrical surveys 

Ice coring Analogue 

research 
- Environmental conditions 

- Ground-truthing & cross-measurements 
Field reconnaissance 

 

Summary 

This paper emphasizes the importance of using terrestrial analogues to improve our 

understanding of the role of ice on Mars, both in the past and present, through its associated 

landforms. We present a series of sites of interest for their climate conditions, topography, 

glaciation history, ice dynamics and mass balance, and presence of specific landforms, that 

capture past or present conditions on Mars. Because the next natural step in terms of 

identifying sites with potential for ISRU calls for in-situ investigation of icy regions, we 

discuss a list of techniques currently used to characterize (peri)glacial environments on 

Earth. The continued research of Martian (peri)glacial environments through comparative 

geology is largely relevant for the future of Mars exploration.  
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