3,294 research outputs found

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Perimeter-Based Data Replication in Mobile Sensor Networks

    Get PDF
    This paper assumes a set of n mobile sensors that move in the Euclidean plane as a swarm. Our objectives are to explore a given geographic region by detecting spatio-temporal events of interest and to store these events in the network until the user requests them. Such a setting finds applications in mobile environments where the user (i.e., the sink) is infrequently within communication range from the field deployment. Our framework, coined SenseSwarm, dynamically partitions the sensing devices into perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to minimize energy consumption, while storage and replication takes place at the core nodes which are physically and logically shielded to threats and obstacles. To efficiently identify the nodes laying on the perimeter of the swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm with a low communication complexity. For storage and fault-tolerance we devise the Data Replication Algorithm (DRA), a voting-based replication scheme that enables the exact retrieval of events from the network in cases of failures. Our trace-driven experimentation shows that our framework can offer significant energy reductions while maintaining high data availability rates. In particular, we found that when failures are less than 60% failure then we can recover over 80% of generated events exactly

    Perimeter-Based Data Replication in Mobile Sensor Networks

    Get PDF
    This paper assumes a set of n mobile sensors that move in the Euclidean plane as a swarm. Our objectives are to explore a given geographic region by detecting spatio-temporal events of interest and to store these events in the network until the user requests them. Such a setting finds applications in mobile environments where the user (i.e., the sink) is infrequently within communication range from the field deployment. Our framework, coined SenseSwarm, dynamically partitions the sensing devices into perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to minimize energy consumption, while storage and replication takes place at the core nodes which are physically and logically shielded to threats and obstacles. To efficiently identify the nodes laying on the perimeter of the swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm with a low communication complexity. For storage and fault-tolerance we devise the Data Replication Algorithm (DRA), a voting-based replication scheme that enables the exact retrieval of events from the network in cases of failures. Our trace-driven experimentation shows that our framework can offer significant energy reductions while maintaining high data availability rates. In particular, we found that when failures are less than 60% failure then we can recover over 80% of generated events exactly

    E-LIS: E-prints για τη Βιβλιοθηκονομία και την Επιστήμη της Πληροφόρησης (ΒΕΠ)

    Get PDF
    This presentation is an introduction to E-LIS (E-prints in Library and Information Services), briefly covering the basics of the repository. It is also covering the effort of the Cypriot and Greek teams (of E-LIS) to transfer massively the proceedings of the Pan-Hellenic Conferences of Greek Academic Libraries in to the E-LIS. The presentation was given at Nicosia, University of Cyprus Library, 30 May 2007

    In-network data acquisition and replication in mobile sensor networks

    Get PDF
    This paper assumes a set of n mobile sensors that move in the Euclidean plane as a swarm. Our objectives are to explore a given geographic region by detecting and aggregating spatio-temporal events of interest and to store these events in the network until the user requests them. Such a setting finds applications in mobile environments where the user (i.e., the sink) is infrequently within communication range from the field deployment. Our framework, coined SenseSwarm, dynamically partitions the sensing devices into perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to minimize energy consumption, while storage and replication takes place at the core nodes which are physically and logically shielded to threats and obstacles. To efficiently identify the nodes laying on the perimeter of the swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm with a low communication complexity. For storage and fault-tolerance we devise the Data Replication Algorithm (DRA), a voting-based replication scheme that enables the exact retrieval of values from the network in cases of failures. We also extend DRA with a spatio-temporal in-network aggregation scheme based on minimum bounding rectangles to form the Hierarchical-DRA (HDRA) algorithm, which enables the approximate retrieval of events from the network. Our trace-driven experimentation shows that our framework can offer significant energy reductions while maintaining high data availability rates. In particular, we found that when failures across all nodes are less than 60%, our framework can recover over 80% of detected values exactly

    E-LIS: E-prints για τη Βιβλιοθηκονομία και την Επιστήμη της Πληροφόρησης (ΒΕΠ)

    Get PDF
    This presentation is an introduction to E-LIS (E-prints in Library and Information Services), briefly covering the basics of the repository. It is also covering the effort of the Cypriot and Greek teams (of E-LIS) to transfer massively the proceedings of the Pan-Hellenic Conferences of Greek Academic Libraries in to the E-LIS. The presentation was given at Nicosia, University of Cyprus Library, 30 May 2007
    corecore