455 research outputs found

    Technical note: Preparation improvement of charred cadaveric viscera using sandison’s rehydrating solution for histological analysis

    Get PDF
    In forensic evaluation of charred corpses, internal detrimental signs may result as more significant of those observed during external examination and is often arduous to state if a victim was exposed to fire before or after death. When the histological analysis of the remaining internal viscera is necessary, the massive destruction caused by the lesion, the charring and the coarctation of the samples don't allow to give further information or to determine the remaining organic components of the viscera. This limit is determined by the intrinsic characteristics of this thermal lesivity of self-maintenance even after the exitus of the subject, worsening the initial detrimental framework. The Authors, with the purpose of improving the microscopic visualization of the samples collected from cadavers with peculiar deterioration, as in case of carbonization, suggest the use of a specific technical protocol based on the use of Sandison's rehydrating solution since the samples treated with this solution showed, at microscopic examination, a substantial histological-morphological improvement

    Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension

    Get PDF
    BACKGROUND AND AIMS: Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS: Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24–72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS: Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L ± 43.65 vs. BDL + OP 149.27 μmol/L ± 51.1, p <0.05) and portal pressure (BDL 14 ± 0.6 vs. BDL + OP 11 ± 0.3 mmHg, p <0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS: The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension

    Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure

    Get PDF
    The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure

    Improvement of pea protein isolate powder properties by agglomeration in a fluidized bed: comparison between binder solutions

    Full text link
    [EN] This study aimed to compare the agglomeration process of pea protein isolate (PPI) using water and aqueous gum Arabic solution as binder liquids. Drying air temperature and binder flow rate were set at 75 °C and 3.1 mL/min, respectively. Moisture content, mean particle size, wetting time and flowability were analyzed. Using water as binder liquid, the responses were (4.0 ± 0.4)%, 316.13 ± 16.73 μm, 10 s and free flow, respectively. Aqueous gum Arabic solution provided (2.9 ± 0.5)%, 462.67 ± 51.23 μm, 3 s and free flow as responses. Gum Arabic solution showed to be a more promising binder.Nascimento, RF.; Andreola, K.; Rosa, JG.; Taranto, O. (2018). Improvement of pea protein isolate powder properties by agglomeration in a fluidized bed: comparison between binder solutions. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1431-1438. https://doi.org/10.4995/IDS2018.2018.7344OCS1431143

    Influence of drying conditions on the acacia gum particle growth in fluidized bed agglomeration: in-line monitoring of particle size

    Full text link
    [EN] Acacia gum is an important food emulsifier that presents poor instant properties which can be improved by fluidized bed agglomeration. This study investigated the influence of drying conditions on particle growth kinetics using an in-line particle size monitoring by spatial filter velocimetry. The drying conditions varied according to the binder flow rate and the fluidizing air temperature. The particle growth kinectis showed drying conditions dependence. At mild drying conditions the growth rate and the process yield were higher. The in-line particle size monitoring was useful to observe the influence of the drying conditions on the growth kinetics.Rosa, J.; Nascimento, RF.; Andreola, K.; Taranto, OP. (2018). Influence of drying conditions on the acacia gum particle growth in fluidized bed agglomeration: in-line monitoring of particle size. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1439-1446. https://doi.org/10.4995/IDS2018.2018.7345OCS1439144

    The role of RIPK1 mediated cell death in acute on chronic liver failure

    Get PDF
    Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530–0.776), 0.696 (95%CI 0.593–0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593–0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF

    Structural and Folding Dynamic Properties of the T70N Variant of Human Lysozyme

    Get PDF
    Definition of the transition mechanism from the native globular protein into fibrillar polymer was greatly improved by the biochemical and biophysical studies carried out on the two amyloidogenic variants of human lysozyme, I56T and D67H. Here we report thermodynamic and kinetic data on folding as well as structural features of a naturally occurring variant of human lysozyme, T70N, which is present in the British population at an allele frequency of 5% and, according to clinical and histopathological data, is not amyloidogenic. This variant is less stable than the wild-type protein by 3.7 kcal/mol, but more stable than the pathological, amyloidogenic variants. Unfolding kinetics in guanidine are six times faster than in the wild-type, but three and twenty times slower than in the amyloidogenic variants. Enzyme catalytic parameters, such as maximal velocity and affinity, are reduced in comparison to the wild-type. The solution structure, determined by 1H NMR and modeling calculations, exhibits a more compact arrangement at the interface between the beta-sheet domain and the subsequent loop on one side and part of the alpha domain on the other side, compared with the wild-type protein. This is the opposite of the conformational variation shown by the amyloidogenic variant D67H, but it accounts for the reduced stability and catalytic performance of T70N

    Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure

    Get PDF
    Background and aims: Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Here we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. / Material and Methods: Circulating TLR4 ligands and hepatic TLR4 expression was measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo with 10mg/Kg, i.p. in rodent models of ACLF (bile duct ligation + lipopolysaccharide (LPS); carbontetrachloride + LPS) and ALF (Galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5).. The in vivo therapeutic effect was assessed by coma free survival, organ injury and cytokine release and in vitro by measuring IL6, IL1b or cell injury (TUNEL), respectively. / Results: In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p<0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS induced cytokine secretion and cell death (p=0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma free survival, reduced the degree of hepatocyte cell death in liver p<0.001) and kidneys (p=0.048) and reduced circulating cytokine levels (IL1b p<0.001). In a rodent model of ALF TAK-242 prevented organ injury (p<0.001) and systemic inflammation (IL1b p<0.001). / Conclusion: This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF and its inhibition improves severity of organ injury and outcome. TAK-242 may be of therapeutic relevance in patients with liver failure

    Urea cycle dysregulation in non-alcoholic fatty liver disease

    Get PDF
    Background: In non-alcoholic steatohepatitis (NASH), function of urea cycle enzymes (UCEs) may be affected and result in hyperammonemia with risk of disease progression. We aimed to determine whether expression and function of UCEs are altered in a NASH animal model and in non-alcoholic fatty liver disease (NAFLD) patients and whether this is reversible. / Methods: Rats were fed a high-fat, high-cholesterol diet for 10 months to induce NASH and then changed to normal chow to recover. In humans, we obtained liver biopsies from 20 patients with steatosis and 15 NASH patients. Primary rat hepatocytes were isolated and cultured with free fatty acids. We measured the gene and protein expression, the activity of ornithine transcarbamylase (OTC) and ammonia concentrations. Moreover, we assessed the promoter methylation status of OTC and carbamoyl phosphate synthetase (CPS1) in rats, humans and in steatotic hepatocytes. / Results: In NASH animals, gene and protein expression of OTC and CPS1 and activity of OTC were reversibly reduced and hypermethylation of OTC promotor genes was observed. Also in NAFLD patients, OTC enzyme concentration and activity were reduced and ammonia concentrations were increased and more so in NASH. Furthermore, OTC and CPS1 promoter regions were hypermethylated. In primary hepatocytes induction of steatosis was associated with OTC promoter hypermethylation, reduction in the gene expression of OTC and CPS1 and an increase in ammonia concentration in the supernatant. / Conclusion: NASH is associated with a reduction in gene and protein expression, and activity of UCEs resulting in hyperammonemia, possibly through hypermethylation of UCE genes and impairment of urea synthesis. Our investigations describe for the first time a link between NASH, function of UCEs and hyperammonemia providing a novel therapeutic target. / Lay summary: In patients with fatty liver disease, the enzymes that convert nitrogen waste into urea may be affected leading to the accumulation of the toxic substance, ammonia. This accumulation of ammonia can lead to development of scar tissue and risk of progression of disease. In this study, we show that fat accumulation in the liver produces a reversible reduction in the function of these enzymes that are involved in detoxification of ammonia. These data provide potential new targets for therapy of fatty liver disease
    • …
    corecore