94 research outputs found

    Hyperuricemia during Pregnancy Leads to a Preeclampsia-Like Phenotype in Mice.

    Get PDF
    Hyperuricemia is a common feature in pregnancies compromised by pre-eclampsia, a pregnancy disease characterized by hypertension and proteinuria. The role of uric acid in the pathogenesis of pre-eclampsia remains largely unclear. The aim of this study was to investigate the effect of elevated uric acid serum levels during pregnancy on maternal blood pressure and neonatal outcome using two different murine knockout models. Non-pregnant liver-specific GLUT9 knockout (LG9KO) mice showed elevated uric acid serum concentrations but no hypertensive blood pressure levels. During pregnancy, however, blood pressure levels of these animals increased in the second and third trimester, and circadian blood pressure dipping was severely altered when compared to non-pregnant LG9KO mice. The impact of hyperuricemia on fetal development was investigated using a systemic GLUT9 knockout (G9KO) mouse model. Fetal hyperuricemia caused distinctive renal tissue injuries and, subsequently an impaired neonatal growth pattern. These findings provide strong evidence that hyperuricemia plays a major role in the pathogenesis of hypertensive pregnancy disorders such as pre-eclampsia. These novel insights may enable the development of preventive and therapeutic strategies for hyperuricemia-related diseases

    A Novel Murine Multi-Hit Model of Perinatal Acute Diffuse White Matter Injury Recapitulates Major Features of Human Disease.

    Get PDF
    The selection of an appropriate animal model is key to the production of results with optimal relevance to human disease. Particularly in the case of perinatal brain injury, a dearth of affected human neonatal tissue available for research purposes increases the reliance on animal models for insight into disease mechanisms. Improvements in obstetric and neonatal care in the past 20 years have caused the pathologic hallmarks of perinatal white matter injury (WMI) to evolve away from cystic necrotic lesions and toward diffuse regions of reactive gliosis and persistent myelin disruption. Therefore, updated animal models are needed that recapitulate the key features of contemporary disease. Here, we report a murine model of acute diffuse perinatal WMI induced through a two-hit inflammatory-hypoxic injury paradigm. Consistent with diffuse human perinatal white matter injury (dWMI), our model did not show the formation of cystic lesions. Corresponding to cellular outcomes of dWMI, our injury protocol produced reactive microgliosis and astrogliosis, disrupted oligodendrocyte maturation, and disrupted myelination.. Functionally, we observed sensorimotor and cognitive deficits in affected mice. In conclusion, we report a novel murine model of dWMI that induces a pattern of brain injury mirroring multiple key aspects of the contemporary human clinical disease scenario

    Tissue engineering: A new approach in cardiovascular surgery; Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh

    Get PDF
    Objective: In tissue engineering the material properties of synthetic compounds are chosen to enable delivery of dissociated cells onto a scaffold in a manner that will result in in vitro formation of a new functional tissue. The seeding of human fibroblasts followed by human endothelial cells on resorbable mesh is a precondition of a successful creation of human tissues such as vessels or cardiac valves. Methods: Polymeric scaffolds (n=18) composed of polyglycolic acid (PGA) with a fiber diameter of 12-15 ÎĽm and a polymer density of 70 mg/ml were used as square sheets of 1Ă—1Ă—0.3 cm. Fibroblasts (passage 7) harvested from human foreskin were seeded (3.4Ă—106) and cultured over a 3 week period on a PGA-mesh, followed by seeding of endothelial cells (passage 5, 2.8Ă—106) harvested from human ascending aorta. Thereafter the new tissue was stained for HE, van Gieson, Trichrom-Masson, Factor VIII and CD 34 and proved by scanning electron microscopy. Results: Microscopic examination of the seeded mesh demonstrated that the human fibroblasts were attached to the polymeric fibers and had begun to spread out and divide. The scanning electron microscopic examination demonstrated a homogeneous scaffold resembling a solid sheet of tissue. The seeded endothelial cells formed a monolayer on the fibroblasts and no endothelial cell invasion or new formation of capillaris could be detected. Conclusions: These results are a first step to demonstrate that seeding of human fibroblasts and endothelial cells on PGA-mesh might be a feasible model to construct human tissues such as vessels or cardiac valve

    Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes

    Get PDF
    Objective: Currently used valve substitutes for valve replacement have certain disadvantages that limit their long-term benefits such as poor durability, risks of infection, thromboebolism or rejection. A tissue engineered autologous valve composed of living tissue is expected to overcome these shortcomings with natural existing biological mechanisms for growth, repair, remodeling and development. The aim of the study was to improve cell seeding methods for developing tissue-engineered valve tissue. Methods: Human aortic myofibroblasts were seeded on polyglycolic acid (PGA) meshes. Cell attachment and growth of myofibroblasts on the PGA scaffolds with different seeding intervals were compared to determine an optimal seeding interval. In addition, scanning electron microscopy study of the seeded meshes was also performed to document tissue development. Results: There was a direct correlation between cell numbers assessed by direct counting and MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltertra-zolium bromide) assay. Both attach rate and cell growth seeded on meshes with long intervals (24 and 36 h) were significantly higher than those seeded with short intervals (2 and 12 h) (P≪0.01), there was no significant difference between 24- and 36-h seeding interval. Scanning electron microscopy also documented more cell attachment with long seeding intervals resulting in a more solid tissue like structure. Conclusion: It is feasible to use human aortic myofibroblasts to develop a new functional tissue in vitro. Twenty-four hours is an optimal seeding interval for seeding human aortic myofibroblasts on PGA scaffolds and MTT test is a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshe

    MicroRNA Cargo in Wharton's Jelly MSC Small Extracellular Vesicles: Key Functionality to In Vitro Prevention and Treatment of Premature White Matter Injury.

    Get PDF
    Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI. We hypothesize that miRNAs have a key function in the beneficial effects of MSC-sEV. We isolated MSC from umbilical cord tissue, the Wharton's jelly (WJ), and purified small extracellular vesicles (sEV) from WJ-MSC culture supernatant by ultracentrifugation and size exclusion chromatography. The miRNA content was quantified by real-time polymerase chain reaction. A luciferase gene assay validated silencing of TP53 and TAOK1, which we previously identified as predicted target genes of MSC-sEV miRNAs by Next Generation Sequencing and pathway enrichment analysis. The impact of sEV miRNAs on oligodendroglial maturation and neuronal apoptosis was evaluated using an in vitro oxygen-glucose deprivation model (OGD/R) by knocking-down DROSHA in WJ-MSC, which initiates miRNA processing. WJ-MSC-sEV contained miRNAs involved in WMI, namely hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-27b-3p, and the hsa-let-7 family. The luciferase assay strongly indicated an inhibitory effect of sEV miRNAs on the gene expression of TP53 and TAOK1. Small EV initiated oligodendrocyte maturation and reduced OGD/R-mediated neuronal apoptosis. Knocking-down DROSHA in WJ-MSC reduced the expression of sEV miRNAs and led to the loss of their beneficial effects. Our in vitro study strongly indicates the key function of miRNAs in the therapeutic potential of WJ-MSC-sEV in premature WMI

    Modified ultrafiltration lowers adhesion molecule and cytokine levels after cardiopulmonary bypass without clinical relevance in adults

    Get PDF
    Objective: Cardiac surgery with cardiopulmonary bypass (CPB) results in expression of cytokines and adhesion molecules (AM) with subsequent inflammatory response. The purpose of the study was to evaluate the clinical impact of modified ultrafiltration (MUF) and its efficacy in reducing cytokines and AM following coronary artery bypass grafting (CABG) in adults. Methods: A prospective randomized study of 97 patients undergoing elective CABG was designed. Fifty patients were operated on using normothermic and 47 patients using hypothermic CPB. The normothermic group was subdivided into a group with modified ultrafiltration (n=30) and a group without MUF (n=20). In the hypothermic group 30 patients received MUF compared to 17 patients serving as controls. MUF was instituted after CPB for 15 min through the arterial and venous bypass circuit lines. Cytokines (IL-6, IL-8, TNF-α, IL-2R) and adhesion molecules (sE-selectin, sICAM-1) were measured preoperatively, pre-MUF, in the ultrafiltrate, 24 h, 48 h and 6 days after surgery by chemiluminescent enzyme immunometric assay or enzyme-linked immunosorbent assay (ELISA). Clinical parameters were collected prospectively until discharge. Results: In all patients AM and cytokines were significantly elevated after normothermic and hypothemic CPB. AM and cytokines were significantly higher in hypothermia compared to normothermia. In hypothermic CPB sE-selectin was decreased after 24 h by 37% (P<0.0063) and by 40% (P<0.0027) after 48 h postoperatively. ICAM-1 was reduced by 43% (P<0.0001) after 24 h and by 60% (P<0.0001) after 6 days. Similar results were seen in cytokines with reduction up to 60% after 24 h. Changes after 48 h were noticeable but not significant. Reduction of AM and cytokines after normothermic CPB was minimal. Neither in normothermia, nor in hypothermia has sIL-2R been effectively removed from the circulation. There were no significant differences in the clinical variables between the patients with or without MUF. Conclusion: AM and cytokines are significantly elevated after hypothermic CPB compared to normothermic CPB. MUF led to a significant reduction in cytokine and AM levels after hypothermic CPB, except for IL-2R. MUF showed minimal effect in normothermia. We conclude that MUF is an efficient way to remove cytokines and AM. However, we were unable to demonstrate any significant impact of MUF in outcome of adults after elective CAB

    Human Wharton’s jelly mesenchymal stromal cell-derived small extracellular vesicles drive oligodendroglial maturation by restraining MAPK/ERK and Notch signaling pathways.

    Get PDF
    Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits. Thus, we hypothesized that sEV derived from WJ-MSC directly promote oligodendroglial maturation in oligodendrocyte precursor cells. To test this assumption, sEV were isolated from culture supernatants of human WJ-MSC by ultracentrifugation and co-cultured with the human immortalized oligodendrocyte precursor cell line MO3.13. As many regulatory functions in WMI have been ascribed to microRNA (miR) and as sEV are carriers of functional miR which can be delivered to target cells, we characterized and quantified the miR content of WJ-MSC-derived sEV by next-generation sequencing. We found that WJ-MSC-derived sEV co-localized with MO3.13 cells within 4 h. After 5 days of co-culture, the expression of myelin basic protein (MBP), a marker for mature oligodendrocytes, was significantly increased, while the oligodendrocyte precursor marker platelet-derived growth factor alpha (PDGFRα) was decreased. Notch and MAPK/ERK pathways known to inhibit oligodendrocyte maturation and differentiation were significantly reduced. The pathway enrichment analysis showed that the miR present in WJ-MSC-derived sEV target genes having key roles in the MAPK pathway. Our data strongly suggest that sEV from WJ-MSC directly drive the maturation of oligodendrocyte precursor cells by repressing Notch and MAPK/ERK signaling

    Insights and future directions for the application of perinatal derivatives in eye diseases: A critical review of preclinical and clinical studies.

    Get PDF
    Perinatal derivatives (PnD) are gaining interest as a source for cell-based therapies. Since the eye is easily accessible to local administration, eye diseases may be excellent candidates to evaluate novel therapeutic approaches. With this work, we performed a systematic review of published preclinical and clinical studies addressing PnD in the treatment of ocular diseases. We have set two specific objectives: (i) to investigate the current level of standardization in applied technical procedures in preclinical studies and (ii) to assess clinical efficacy in clinical trials. Hereto, we selected studies that applied amniotic membrane (hAM) and mesenchymal stromal cells derived from amniotic membrane (hAMSC), placenta (hPMSC), umbilical cord (hUC-MSC) and Wharton's Jelly (hUC-WJ-MSC), excluding those where cells were not transplanted individually, following a systematic PubMed search for preclinical studies and consultation of clinical studies on https://clinicaltrials.gov and https://www.clinicaltrialsregister.eu/. Our bibliographic search retrieved 26 pre-clinical studies and 27 clinical trials. There was a considerable overlap regarding targeted ocular structures. Another common feature is the marked tendency towards (i) locally administered treatments and (ii) the PnD type. In the cornea/ocular surface, hAM was preferred and usually applied directly covering the ocular surface. For neuroretinal disorders, intra-ocular injection of umbilical or placental-derived cells was preferred. In general, basic research reported favourable outcomes. However, due to lack of standardization between different studies, until now there is no clear consensus regarding the fate of administered PnD or their mode of action. This might be accountable for the low index of clinical translation. Regarding clinical trials, only a minority provided results and a considerable proportion is in "unknown status". Nevertheless, from the limited clinical evidence available, hAM proved beneficial in the symptomatic relief of bullous keratopathy, treating dry eye disease and preventing glaucoma drainage device tube exposure. Regarding neuroretinal diseases, application of Wharton's Jelly MSC seems to become a promising future approach. In conclusion, PnD-based therapies seem to be beneficial in the treatment of several ocular diseases. However, much is yet to be done both in the pre-clinical and in the clinical setting before they can be included in the daily ophthalmic practice
    • …
    corecore