374 research outputs found

    Reply to ``Comment on `Magnetic field effects on neutron diffraction in the antiferromagnetic phase of UPt3UPt_3'''

    Get PDF
    Fak, van Dijk and Wills (FDW) question our interpretation of elastic neutron-scattering experiments in the antiferromagnetic phase of UPt_3. They state that our analysis is incorrect because we average over magnetic structures that are disallowed by symmetry. We disagree with FDW and reply to their criticism. FDW also point out that we have mistaken the magnetic field direction in the experiment reported by N. H. van Dijk et al. [Phys. Rev. B 58, 3186 (1998)]. We correct this error and note that our previous conclusion is also valid for the correct field orientation.Comment: 3 page

    Nonlocality in mesoscopic Josephson junctions with strip geometry

    Full text link
    We study the current in a clean superconductor-normal-metal-superconductor junction of length d and width w in the presence of an applied magnetic field H. We show that both the geometrical pattern of the current density and the critical current as a function of the total flux in the junction, depend on the ratio of the Josephson vortex distance a_0 and the range r of the nonlocal electrodynamics. In particular, the critical current has the periodicity of the superconducting flux quantum only for r<a_0 and acquires, due to boundary effects, the double (pseudo-) periodicity for strong nonlocality, r>a_0. Comparing our results to recent experiments of Heida et al. [Phys. Rev. B 57, R5618 (1998)] we find good agreement.Comment: 4 pages, 5 figures, to be published in the RC section of Phys. Rev.

    Stability of π\pi junction configurations in ferromagnet-superconductor heterostructures

    Full text link
    We investigate the stability of possible order parameter configurations in clean layered heterostructures of the SFS...FSSFS...FS type, where SS is a superconductor and FF a ferromagnet. We find that for most reasonable values of the geometric parameters (layer thicknesses and number) and of the material parameters (such as magnetic polarization, wavevector mismatch, and oxide barrier strength) several solutions of the {\it self consistent} microscopic equations can coexist, which differ in the arrangement of the sequence of ``0'' and ``Ï€\pi'' junction types (that is, with either same or opposite sign of the pair potential in adjacent SS layers). The number of such coexisting self consistent solutions increases with the number of layers. Studying the relative stability of these configurations requires an accurate computation of the small difference in the condensation free energies of these inhomogeneous systems. We perform these calculations, starting with numerical self consistent solutions of the Bogoliubov-de Gennes equations. We present extensive results for the condensation free energies of the different possible configurations, obtained by using efficient and accurate numerical methods, and discuss their relative stabilities. Results for the experimentally measurable density of states are also given for different configurations and clear differences in the spectra are revealed. Comprehensive and systematic results as a function of the relevant parameters for systems consisting of three and seven layers (one or three junctions) are given, and the generalization to larger number of layers is discussed.Comment: 17 pages, including 14 Figures. Higher resolution figures available from the author

    Magnetic field influence on the proximity effect in semiconductor - superconductor hybrid structures and their thermal conductance

    Get PDF
    We show that a magnetic field can influnce the proximity effect in NS junctions via diamagnetic screening current flowing in the superconductor. Using ballistic quasi-one-dimensional (Q1D) electron channels as an example, we show that the supercurrent flow shifts the proximity-induced minigap in the excitation spectrum of a Q1D system from the Fermi level to higher quasiparticle energies. Thermal conductance of a Q1D channel (normalized by that of a normal Q1D ballistic system) is predicted to manifest such a spectral feature as a nonmonotonic behavior at temperatures corresponding to the energy of excitation into the gapful part of the spectrum.Comment: 5 pages, 3 figures, revised version with a new titl

    Tunnelling defect nanoclusters in hcp 4He crystals: alternative to supersolidity

    Full text link
    A simple model based on the concept of resonant tunnelling clusters of lattice defects is used to explain the low temperature anomalies of hcp 4He crystals (mass decoupling from a torsional oscillator, shear modulus anomaly, dissipation peaks, heat capacity peak). Mass decoupling is a result of an internal Josephson effect: mass supercurrent inside phase coherent tunnelling clusters. Quantitative results are in reasonable agreement with experiments.Comment: 13 pages, 5 figure

    Conductivity of the classical two-dimensional electron gas

    Full text link
    We discuss the applicability of the Boltzmann equation to the classical two-dimensional electron gas. We show that in the presence of both the electron-impurity and electron-electron scattering the Boltzmann equation can be inapplicable and the correct result for conductivity can be different from the one obtained from the kinetic equation by a logarithmically large factor.Comment: Revtex, 3 page

    Phase coherence phenomena in superconducting films

    Full text link
    Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We explore the quasi-particle spectral properties of the gapless phase and comment on the transport properties. Of particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the impurity scattering. We find that films subject to columnar defects exhibit a `Berry-Robnik' symmetry which changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase. As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential conspire with the in-plane magnetic field to induce a band of localized sub-gap states. Finally, we investigate the interplay of the proximity effect and gapless superconductivity in thin normal metal-superconductor bi-layers.Comment: 13 pages, 8 figures include

    Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

    Full text link
    We study non-equilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative and Josephson currents co-existing within the same proximity region. In junctions with transparent interfaces, the suppression of the Josephson current appears at rather large voltage, eV∼ΔeV\sim \Delta, and the current vanishes at eV≥ΔeV\geq\Delta. Josephson current inversion becomes possible in junctions with resistive interfaces, where the inversion occurs within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent injection current, the critical current measured in a current biased junction does not coincide with the maximum Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence of the conductance shows two pronounced peaks, at the bulk gap energy, and at the proximity gap energy; the phase oscillation of the conductance exhibits qualitatively different form at small voltage eV<ΔeV<\Delta, and at large voltage eV>ΔeV>\Delta.Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.

    Magnetoconductance Oscillations in Ballistic Semiconductor-Superconductor Junctions

    Full text link
    The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused by the magnetic field is the origin of the conductance oscillations.Comment: 4 pages, 4 figure

    Observation of non-classical rotational inertia in bulk solid 4He

    Full text link
    In recent torsional oscillator experiments by Kim and Chan (KC), a decrease of rotational inertia has been observed in solid 4He in porous materials and in a bulk annular channel. This observation strongly suggests the existence of "non-classical rotational inertia" (NCRI), i.e. superflow, in solid 4He. In order to study such a possible "supersolid" phase, we perform torsional oscillator experiments for cylindrical solid 4He samples. We have observed decreases of rotational inertia below 200 mK for two solid samples (pressures P = 4.1 and 3.0 MPa). The observed NCRI fraction at 70 mK is 0.14 %, which is about 1/3 of the fraction observed in the annulus by KC. Our observation is the first experimental confirmation of the possible supersolid finding by KC.Comment: 6 pages, 3 firures, submitted to J. Low Temp. Phys. (Proceedings of QFS2006
    • …
    corecore