44 research outputs found

    Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers

    Get PDF
    WNT-CTNN1B signaling promotes cancer cell proliferation and stemness. Furthermore, recent evidence indicates that macroautophagy/autophagy regulates WNT signaling. Here we investigated the impact of inhibiting WNT signaling on autophagy in glioblastoma (GBM), a devastating brain tumor. Inhibiting TCF, or silencing TCF4 or CTNNB1/β-catenin upregulated SQSTM1/p62 in GBM at transcriptional and protein levels and, in turn, autophagy. DKK1/Dickkopf1, a canonical WNT receptor antagonist, also induced autophagic flux. Importantly, TCF inhibition regulated autophagy through MTOR inhibition and dephosphorylation, and nuclear translocation of TFEB, a master regulator of lysosomal biogenesis and autophagy. TCF inhibition or silencing additionally affected GBM cell proliferation and migration. Autophagy induction followed by its blockade can promote cancer cell death. In agreement with this notion, halting both TCF-CTNNB1 and autophagy pathways decreased cell viability and induced apoptosis of GBM cells through a SQSTM1-dependent mechanism involving CASP8 (caspase 8). In vivo experiments further underline the therapeutic potential of such dual targeting in GBM

    The influence of sleep apnea syndrome and intermittent hypoxia in carotid adventitial vasa vasorum

    Get PDF
    Subjects with sleep apnea-hypopnea syndrome (SAHS) show an increased carotid intima-media thickness. However, no data exist about earlier markers of atheromatous disease, such as the proliferation and expansion of the adventitial vasa vasorum (VV) to the avascular intima in this setting. Our aim was to assess carotid VV density and its relationship with sleep parameters in a cohort of obese patients without prior vascular events. A total of 55 subjects evaluated for bariatric surgery were prospectively recruited. A non-attended respiratory polygraphy was performed. The apnea-hypopnea index (AHI) and the cumulative percentage of time spent with oxygen saturation below 90% (CT90) were assessed. Serum concentrations of soluble intercellular adhesion molecule 1, P-selectin, lipocalin-2 and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured. Contrast-enhanced carotid ultrasound was used to assess the VV density. Patients with SAHS (80%) showed a higher adventitial VV density (0.801±0.125 vs. 0.697±0.082, p = 0.005) and higher levels of sVCAM-1 (745.2±137.8 vs. 643.3±122.7 ng/ml, p = 0.035) than subjects with an AHI lower than 10 events/hour. In addition, a positive association exist between mean VV density and AHI (r = 0.445, p = 0.001) and CT90 (r = 0.399, p = 0.005). Finally, in the multiple linear regression analysis, female sex, fasting plasma glucose and AHI (but not CT90) were the only variables independently associated with the mean adventitial VV density (R2 = 0.327). In conclusion, a high VV density is present in obese subjects with SAHS, and chronic intermittent hypoxia is pointed as an independent risk factor for the development of this early step of atheromatous diseaseThis study was supported by grants from Instituto de Salud Carlos III (Fondo de Investigación Sanitaria PI15/00260), European Union (European Regional Development Fund, Fondo Europeo de Desarrollo Regional, “Una manera de hacer Europa”), Fundación Sociedad Española Endocrinología y Nutrición (FSEEN) and Laboratorios Almirall (“Beca FSEEN de ayuda a la investigación sobre factores de riesgo cardiovascular”, Laboratorio ESTEVE and Menarini Spain S.A. CIBER de Diabetes y Enfermedades Metabólicas Asociadas and CIBER de Enfermedades Respiratorias are initiatives of the Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to thank Virtudes Maria and Mª del Valle Peña (from the Unit for the Detection and Treatment of Atherothrombotic Diseases), Olga Mínguez and Lidia Pascual (from the Sleep Unit) for their help in the study

    A dominant negative mutation uncovers cooperative control of caudal Wolffian duct development by Sprouty genes

    Get PDF
    The Wolffian ducts (WD) are paired epithelial tubules central to the development of the mammalian genitourinary tract. Outgrowths from the WD known as the ureteric buds (UB) generate the collecting ducts of the kidney. Later during development, the caudal portion of the WD will form the vas deferens, epididymis and seminal vesicle in males, and will degenerate in females. While the genetic pathways controlling the development of the UB are firmly established, less is known about those governing development of WD portions caudal to the UB. Sprouty proteins are inhibitors of receptor tyrosine kinase (RTK) signaling in vivo. We have recently shown that homozygous mutation of a conserved tyrosine (Tyr53) of Spry1 results in UB defects indistinguishable from that of Spry1 null mice. Here, we show that heterozygosity for the Spry1 Y53A allele causes caudal WD developmental defects consisting of ectopically branched seminal vesicles in males and persistent WD in females, without affecting kidney development. Detailed analysis reveals that this phenotype also occurs in Spry1+/- mice but with a much lower penetrance, indicating that removal of tyrosine 53 generates a dominant negative mutation in vivo. Supporting this notion, concomitant deletion of one allele of Spry1 and Spry2 also recapitulates the genital phenotype of Spry1Y53A/+ mice with high penetrance. Mechanistically, we show that unlike the effects of Spry1 in kidney development, these caudal WD defects are independent of Ret signaling, but can be completely rescued by lowering the genetic dosage of Fgf10. In conclusion, mutation of tyrosine 53 of Spry1 generates a dominant negative allele that uncovers fine-tuning of caudal WD development by Sprouty genes.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by grants BFU2017-83646-P (MINECO) and PID2020-114947 GB-I00 (MCIU) (both supported by funds from AEI/FEDER, UE) to ME. MV was supported by a predoctoral fellowship from AGAUR. GA and CA and GA are supported by a fellowship from Universitat de Lleida. SC was supported by a Cofund action from the Marie Curie program of the E

    Metabolomic Analysis Points to Bioactive Lipid Species and Acireductone Dioxygenase 1 (ADI1) as Potential Therapeutic Targets in Poor Prognosis Endometrial Cancer

    Get PDF
    Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.This study was funded by the Instituto de Salud Carlos III (ISCIII) through projects PI20/00502, CP19/00025, CB16/12/00231, PI16/00692, PI18/00573, PI21/00672, CP17/00063 and PI18/00795; and by the Spanish Ministry of Science, Innovation and Universities (Ministerio de Ciencia, Innovación y Universidades, RTI2018-099200-BI00), co-funded by the European Regional Development Fund (ERDF) as part of the “A way to make Europe” programme and the European Social Fund (ESF) as part of the “Investing in Your Future” programme. This study was also supported by the “Xarxa de Bancs de Tumors de Catalunya” and sponsored by “Pla Director d’Oncologia de Catalunya (XBTC)”, “IRBLleida Biobank” (B.0000682) and “Plataforma Biobancos” PT20/00021. We also thank the Generalitat of Catalonia: Agency for Management of University and Research Grants (2017SGR1368 and 2017SGR696) and the “Asociación Española Contra el Cáncer” (AECC; Grupos Estables 2018 and LABAE19004LLOB). M.J. is a Serra Húnter Fellow. N.E. (MS19/00025) and D.L-N. (MS17/00063) are recipients of a Miguel Servet research scheme (co-funded by the ESF program “Investing in Your Future”). C. M-L. holds a predoctoral fellowship from the Generalitat de Catalunya (2020FI_B2 00099) and the predoctoral fellowship “Ajuts 2021 de Promoció de la Recerca en Salut-9a edició” from IRBLleida/Diputació de Lleida. IRBLleida is a CERCA Program/Generalitat of Catalonia
    corecore