38 research outputs found

    Assessment of Reservoir Sedimentation Effect on Coastal Erosion and Evaluation of Sediment Removal Techniques for Its Reduction — The Case of Nestos River, Greece

    Get PDF
    Nestos is one of the most important transboundary rivers flowing through Bulgaria and Greece. In the Greek part of the river, two reservoirs, the Thisavros Reservoir and the Platanovrysi Reservoir, have already been constructed and started operating in 1997 and 1999, respectively. In the first part of the chapter, the reservoir sedimentation effect on the coastal erosion is investigated, for the case of the Nestos River delta and the adjacent shorelines, through a combination of mathematical modeling, modern remote sensing techniques, and field surveying, while in the second part, the mechanical removal as well as the flushing of sediment from the reservoir of Platanovrysi and its disposal in the subbasin downstream of the Platanovrysi Dam up to the Nestos River delta are investigated as potential treatment methods of reducing coastal erosion, using a modification of the same mathematical model that is utilized in the first part of the chapter. The overall findings and conclusions arising from the work presented and discussed in the present chapter contribute to the overall need to thoroughly understand the direct effect of dam construction on coastal erosion, as well as to examine the effectiveness of potential sediment management treatments

    Numerical Investigation of Quasi-sessile Droplet Absorption into Wound Dressing Capillaries

    Get PDF
    The key concept in wound dressing design and development is the fact that keeping a wound moist accelerates healing. Therefore, the selection of the appropriate wound dressing type is vital. The absorption of wound exudate by wound dressings can be considered as a microfluidic phenomenon that can be investigated either by performing high resolution laboratory experiments or by utilizing high resolution Computational Fluid Dynamics numerical simulations. As an initial step, in the present paper, the effects of the pore size (wound dressing porosity), the liquid (wound exudate) viscosity, and the initial droplet diameter are numerically investigated using a simplified analog of the phenomenon that consists of a quasi-sessile droplet being absorbed by a single cylindrical pore. For this purpose, an enhanced Volume Of Fluid model, developed in the general context of OpenFOAM, is validated and applied. It is found that distinct droplet absorption rates exist with specific relationships derived using best-fit lines that can predict the absorption rates for particular values of pore size and liquid viscosity. For the examined Eo and Oh number ranges (0.0015 < Eo < 0.15 and 0.0035 < Oh < 0.095), these distinct droplet absorption rates are directly linked with four different droplet evolution regimes that are grouped in a well-defined flow map. Finally, it is shown that the resulting liquid absorption rates are not significantly affected by the initial droplet diameter and that an appropriate wound dressing porosity can be selected by an estimation of the wound exudate physical properties

    Numerical investigation of liquid film instabilities and evaporation in confined oscillating slug-plug flows

    Get PDF
    An enhanced volume of fluid (VOF)-based numerical simulation framework that accounts for conjugate heat transfer between solid and two-phase flow regions and phase-change due to boiling/condensation, is utilised in order to investigate the effect of flow oscillation amplitude and frequency on the liquid film evaporation and instability formation in slug-plug flows within heated channels, in saturated flow boiling conditions. Various series of parametric numerical simulations are performed, for different values of flow oscillation amplitude and frequency for a variety of working fluids. For one of the working fluids two different channel diameters are also tested. The oscillations in each case are induced by applying an oscillating pressure boundary condition at the inlet of the channel, keeping the pressure constant at the outlet, after an initial period of constant pressure drop between the inlet and the outlet. Capillary ridges that are initiated at the liquid film, in the vicinity of the leading edge of the considered vapour slugs, are identified as a result of the imposed oscillations, which are translated in the form of capillary waves towards the rear end of the bubbles. It is shown that the formation frequency as well as the geometric characteristics of the generated ridges, are directly related to the corresponding frequency and amplitude of the induced flow oscillations. Furthermore, it is shown that in the initial stages of the bubble fate after the application of the oscillations liquid film evaporation is enhanced with the increase of the oscillation amplitude while it degrades as the frequency of the oscillation becomes higher. However, for large oscillation amplitudes and channel diameters, liquid jets penetrate into the elongated bubbles leading in a lot of cases to bubble break-up

    Effect of Channel Aspect Ratio on Flow Boiling Characteristics within Rectangular Micro-passages

    Get PDF
    In the present paper, a fundamental analysis on the effect of the channel aspect ratio on the bubble dynamics and heat transfer characteristics for the early transient stages of the bubble growth within confined microchannels of rectangular cross-section, under saturated flow boiling conditions, is conducted, utilising high resolution, 3D, transient, conjugate heat transfer simulations. The open-source toolbox OpenFOAM is applied for the simulations, utilising a custom, user-enhanced, diabatic Volume OF Fluid (VOF) solver. Two different series of numerical simulations are performed, focused on a single nucleation event from a single nucleation site and a single nucleation event from multiple, arbitrarily located, nucleation sites, respectively. In each series, three different values of channel aspect ratio are considered, corresponding to a narrow, a square, and a wide microchannel. For the first series, the simulations are performed for a low, a medium, and a high value of applied heat flux and mass flux. For the second series, only the lower values of applied heat flux and mass flux are used for each channel aspect ratio, since this constitutes the worst-case scenario from the overall heat transfer performance point of view, amongst the cases examined in the first series of simulations. The micro-passage aspect ratio has a significant effect in the generated bubble dynamics during the onset of the nucleate boiling regime, as the bubbles grow within the confined liquid crossflow. This alteration of the generated interfacial dynamics, in effect, regulates the size and position of the contact areas of the generated bubbles with the microchannel walls, with a direct effect in the individual contribution and therefore, the balance between the contact line and the liquid film evaporation mechanisms. Moreover, the work presents the quantification of the effect of the solid domain thermal inertia on the whole process and in particular on the local Nusselt numbers. It is evident that considering conjugate heat transfer in numerical simulations of flow boiling is compulsory in order to predict the physical processes in a correct form

    An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling

    Get PDF
    The present numerical investigation identifies quantitative effects of fundamental controlling parameters on the detachment characteristics of isolated bubbles in cases of pool boiling in the nucleate boiling regime. For this purpose, an improved Volume of Fluid (VOF) approach, developed previously in the general framework of OpenFOAM Computational Fluid Dynamics (CFD) Toolbox, is further coupled with heat transfer and phase change. The predictions of the model are quantitatively verified against an existing analytical solution and experimental data in the literature. Following the model validation, four different series of parametric numerical experiments are performed, exploring the effect of the initial thermal boundary layer (ITBL) thickness for the case of saturated pool boiling of R113 as well as the effects of the surface wettability, wall superheat and gravity level for the cases of R113, R22 and R134a refrigerants. It is confirmed that the ITBL is a very important parameter in the bubble growth and detachment process. Furthermore, for all of the examined working fluids the bubble detachment characteristics seem to be significantly affected by the triple-line contact angle (i.e., the wettability of the heated plate) for equilibrium contact angles higher than 45°. As expected, the simulations revealed that the heated wall superheat is very influential on the bubble growth and detachment process. Finally, besides the novelty of the numerical approach, a last finding is the fact that the effect of the gravity level variation in the bubble detachment time and the volume diminishes with the increase of the ambient pressure
    corecore