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Abstract 

The key concept in wound dressing design and development is the fact that keeping a wound 

moist accelerates healing. Therefore, the selection of the appropriate wound dressing type is vital. 

The absorption of wound exudate by wound dressings can be considered as a microfluidic 

phenomenon that can be investigated either by performing high resolution laboratory experiments or 

by utilising high resolution Computational Fluid Dynamics (CFD) numerical simulations. As an 

initial step, in the present paper, the effects of the pore size (wound dressing porosity), the liquid 

(wound exudate) viscosity and the initial droplet diameter, are numerically investigated, using a 

simplified analogue of the phenomenon that consists of a quasi-sessile droplet, being absorbed by a 

single cylindrical pore. For this purpose, an enhanced Volume Of Fluid (VOF) model, developed in 

the general context of OpenFOAM, is validated and applied. It is found that distinct droplet 

absorption rates exist with specific relationships derived, using best-fit lines, that can predict the 

absorption rates for particular values of pore size and liquid viscosity. For the examined Eo and Oh 

number ranges (0.0015 < Eo < 0.15 and 0.0035 < Oh < 0.095), these distinct droplet absorption rates 

are directly linked with four different droplet evolution regimes that are grouped in a well-defined 

flow map. Finally, it is shown that the resulting liquid absorption rates are not significantly affected 

by the initial droplet diameter and that an appropriate wound dressing porosity can be selected by an 

estimation of the wound exudate physical properties.  
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1. Introduction 

 

Wound exudate plays a significant role in wound healing procedures. The presence of 

infection increases the viscosity of wound exudate, due to the changes in bacterial load and protein 

content. Therefore, the selection of the appropriate type of wound dressing with respect to the 

exudate’s viscosity is vital, in order to avoid having higher viscosity exudates within infected wounds 

remaining on the wound surface for longer than they should. However, researchers and wound 

dressing companies, commonly test absorption of wound dressings, applying a protocol (BS EN 

13726-1:2002) that uses a specific serum type solution, without taking into consideration the different 

types of wound exudates [1]. The main challenge for clinicians is to create an environment at the 

wound bed that optimises the wound healing process. The absorption of wound exudate by wound 

dressings is a microfluidic phenomenon that can be investigated performing either high resolution 

laboratory experiments, usually expensive and difficult to implement, or by utilising high resolution 

Computational Fluid Dynamics (CFD) based numerical simulations.  

One of the most significant contributions in wound management that became a key parameter 

in the design and development of wound dressings was the work by Winter [2], who argued that 

keeping a wound moist accelerates the healing process. Exudate consists mainly of water, but it also 

contains electrolytes, nutrients, proteins, inflammatory mediators, protein-digesting enzymes, such 

as matrix metalloproteinases, growth factors and waste products, as well as cells such as neutrophils, 

macrophages and platelets [3] and is produced during the inflammatory and pro-liferative stages of 

the healing process. However, the volume that is produced varies not only among different wound     
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types, depending on the wound size, origin and location, but it is also related to the stage of the healing 

process. 

According to Ovington [4], chronic or nonhealing wounds (venous leg ulcers or wounds in a 

setting of lymphedema) may be associated with very high exudate levels. In this case, the dressing 

must be able to manage the exudate by absorption to establish optimal tissue moisture levels. If the 

wound tissues are adequately moist with minimal exudate production, then the dressing should be 

capable of maintaining the tissue hydration status without too much absorption that could desiccate 

the wound. Alternatively, if tissue moisture levels are already depleted, the dressing must be able to 

restore optimal tissue hydration by donating moisture to the wound. Currently more than 3000 types 

of dressings are available in the market, making it challenging to the physicians to address all aspects 

of wound care [5]. This implies the lack of full understanding of wound care and management [6]. 

Early testing of absorbency and dressing specifications were described by Piskozub [7] and 

Thomas et al.  [8]. As more sophisticated dressings were developed, new standards and test systems 

were required to prove that these new materials performed a specific function in consistent and 

reproducible ways. Thomas [9] discussed the need for dressing standards, described how these have 

evolved, and outlined test methods that could be used to assess key aspects of performance in many 

different available products. 

The best method of evaluating a wound dressing is an in vivo clinical trial. However, too few 

have been undertaken and published  ([10]–[13]). This is also the case with quantitative, comparative 

in vitro data [14]–[16]. Further research into quantitative methods of evaluating these products and 

more clinical trials are urgently needed, especially to assist practitioners with selection of appropriate 

wound dressings. 

According to White and Cutting [17], effective clinical management of exuding wounds 

depends on accurate assessment of the volume and viscosity of exudate. However, there are no 

investigations in the literature up to date that explicitly examine the effect of exudate viscosity and 

there is also a lack of qualitative information regarding exudate viscosity value ranges. Only 

qualitative references to exudate types being watery, viscous or sticky exist (e.g. [18], [19]).  

As mentioned previously, the absorption of wound exudate by wound dressings is a 

microfluidic phenomenon. According to the Authors’ best knowledge, there are no previous 

experimental and/or numerical investigations directly examining the absorption of wound exudate 

into wound dressing capillaries. Therefore, in the following paragraphs indirectly related studies on 

liquid droplet absorption into porous substrates are reviewed. 

Navaz et al. [20] investigated numerically the primary and secondary spread of sessile droplets 

into a porous substrate, utilizing a continuum approach for liquid- and gas-phases. The governing 

equations were discretized by the finite difference method and solutions for both phases are obtained 

by marching in time using the fourth order Runge–Kutta integration algorithm. This type of spread is 

a purely momentum-driven process that is caused by gradients both in capillary pressure and in 

saturation. They developed a methodology for finding the capillary pressure function for sessile 

droplets. This approach was based on experimental data for a liquid/porous medium pair, and using 

universal, non-dimensional curves. Similar solutions were generated by the continuum approach and 

validated using experimental results. The model showed qualitative and quantitative agreement with 

experimental data. Although the focus of their work was to understand the interaction of chemical 

warfare agents with porous media, the approaches are universal and can be applied to determining 

the spread of any liquid into a porous material.  

Markicevic et al. [21] investigated numerically the infiltration of a sessile droplet into a 

homogeneous porous medium for a constant droplet base radius case, where the porous medium was 

represented as a capillary network consisting of pores and throats. They carried out a parametric 

study, varying (i) the liquid viscosity and surface tension, (ii) droplet volume and base radius, and 

(iii) porous medium porosity and permeability. The droplet infiltration time, and the imprint shape 

that was given with two spheroid half-axes were calculated. Dimensionless analysis was utilized to 

correlate the droplet infiltration parameters from which master curves for the droplet infiltration time 
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 3 

and the droplet imprint shape were obtained. Using the infiltration time correlation, both numerical 

and experimental results showed a linear behaviour.  

In their paper, Frank and Perré [22] presented an investigation into drop spreading at the 

surface of a porous substrate, using a pore-level numerical model based on a Lattice-Boltzmann 

scheme. Two contact angles were tested, and two porosity values were investigated and compared 

with a non-porous surface. The numerical results shown a power-law evolution of the wetted zone 

radius with time. Both the exponent and the pre-factor were decreasing with increasing porosity. The 

evolution in time of the droplet height emerged from a competition between pure spreading and bulk 

capillary imbibition within the porous medium.  

Denesuk et al. [23] developed a model for the infiltration of finite size liquid droplets into 

porous materials, including the effects of the instantaneous droplet size on the number of pores in 

contact with the droplet, investigating the time dependence of the droplet radius under two limiting 

case assumptions concerning the kinetic behaviour of the droplet as its volume was depleted. Their 

results were tested against experimental data of silicone liquids on a soda-lime-silicate porous solid. 

In a recent study, Sadeghi et al. [24] implemented a three-dimensional multiphase lattice 

Boltzmann model, validated against the analytical solution of Young’s and Laplace’s laws, in order 

to investigate the spontaneous phase transport in complex porous media and the effects of several 

geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, 

Froude number and contact angle. A parametric study of the influence of main non-dimensional 

parameters upon the impact of liquid drops on permeable surface was also performed.  

Choi et al. [25] presented a level-set method for computation of droplet impact and penetration 

into a porous medium. The volume averaged conservation equations of mass and momentum were 

employed for the porous region, including the effects of porosity and drag force caused by the porous 

solid matrix, being coupled to the conservation equations in the external fluid region through the 

matching conditions of velocity and stress on the porous surface. They conducted simulations to 

investigate the effects of initial droplet radius, impact velocity, contact angles, particle size and 

porosity on the droplet spreading and penetration. A simple analytical formulation was also developed 

for the initial droplet penetration depth and compared with the numerical results.  

To determine the influence of the fabric on droplet spreading using thin fabric meshes, de 

Goede et al. [26] measured the droplet spreading ratio on fabric with and without an underlying 

substrate using a high-speed camera. For fabrics without a substrate, the droplet spreading ratio was 

reduced as the fabric penetration by the liquid reduced the droplet volume spreading on top of the 

fabric. Using entropic lattice Boltzmann simulations, they found that the lower droplet spreading ratio 

on fabrics, both with and without a substrate, is due to an increase of viscous losses inside the droplet 

during spreading. Comparing droplet impact of blood with its Newtonian counterpart, they also 

showed that for spreading on fabrics, just like on smooth surfaces, blood can be approximated as a 

Newtonian fluid.  

In their study, Koponen et al [27] introduced a modification of Kozeny and Carman 

permeability equation [28]–[30] to include the effect of effective porosity. An analytical expression 

for the specific surface area of a system constructed of randomly placed identical obstacles with 

unrestricted overlap was derived, and a lattice-gas cellular automaton method was used to simulate 

the dependence on porosity of permeability, tortuosity, and effective porosity for a flow of Newtonian 

uncompressible fluid in a two- dimensional porous substance.  

Yu and Cheng [31] developed a fractal permeability model for bi-dispersed porous media, 

based on the fractal characteristics of the pores, validated using experimental data. Their model was 

found to be a function of the tortuosity fractal dimension, pore area fractal dimension, sizes of 

particles and clusters, micro-porosity inside clusters, and the effective porosity of a medium. The 

pore area fractal dimension and the tortuosity fractal dimension of the porous samples were 

determined by the box counting method.  

An initial approach provided by experiments performed with the elementary geometry of a 

substrate with a single capillary has been presented in [32], [33]. The work by Kogan et al [32] 

consisted of experimental studies, using a high speed camera, and model calculations, using the     
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 4 

Bosanquet capillary flow equation. These studies were performed investigating the capillary flow of 

a viscous liquid caused by droplet impact on a porous surface. A series of experiments was conducted 

in which the dynamics of capillary flow was monitored under the conditions of single droplet impact 

on a transparent block containing a single capillary. Capillaries having 0.1, 0.3, and 0.5 mm in 

diameter were used in their work; droplets were generated using DI water and a 0.1 percent solution 

of Triton X-100 surfactant as the test liquids. Delbos et al. [33] investigated experimentally how the 

impregnation of porous media can be forced using the initial kinetic energy of an impacting drop. 

They focused on the scale of a single pore – either hydrophilic or hydrophobic – and thus studied the 

impact of a single drop falling on vertical cylindrical capillary tubes. They observed different limit 

regimes and they determined the critical speeds for the different limit regimes, they had observed, 

and obtained a full phase-diagram for their observations. They also stressed the characteristics of 

impregnating slugs namely their volume and their motion within the pores.  

The experiments by Delbos et al. [33] were reproduced numerically by Ding and Theofanous 

[34], who then generalized them by mapping numerical results in the We − Rer plane. Interesting 

phenomena were observed above the substrate and inside the capillary, though the related 

mechanisms were shown to be different. Inertia appeared to be crucial in all these events: inertia from 

the conversion of surface energy was more important in droplet ejection above the substrate, while 

sufficient impact inertia was a necessity for droplet ejection inside the capillary. The significance of 

impact inertia in the slug formation was reflected by a spatial anchoring of stagnation region with 

time. As a result, the amounts of liquid inside the slug were found to come from an upright cylinder 

above the capillary. This was in agreement with the hypothesis of Delbos et al.[33], but the radius of 

the cylinder was 30% greater than the capillary radius. Inertia and contact-angle hysteresis were 

shown to be the most important factors in the transition of penetration regimes; the latter had an 

especially significant effect on the transition to the regime of partial penetration as a slug. 

All these previous investigations are divided into two main categories. The first one examines 

the spreading of a sessile drop above the porous medium, without focusing on the actual phenomena 

that happen within the porous media, due to the complexity of the pore structure. On the other hand, 

the second branch of investigations examine a single pore, in order to be able to study and quantify 

the underpinned characteristics and mechanisms within the pore, but using impacting droplets, where 

the initial momentum of the droplet affects significantly the liquid penetration characteristics within 

the pore. Therefore, the absorption characteristics cannot be isolated, identified and quantified.  In 

the present paper, since the ultimate aim is to understand how the absorption characteristics are 

changing for different fluid viscosities, which would be of direct interest for wound dressing 

applications that constitute the main motivation for this study, non-impacting, quasi-sessile droplets 

that are absorbed by capillary action within a single pore, are addressed for the first time, using 

numerical simulations. For this purpose, an enhanced, user-defined, Volume Of Fluid (VOF) model 

that has been developed by the authors in OpenFOAM is used. The examined pore sizes have been 

selected in order to fall within typical pore size ranges reported in the literature for various types of 

wound dressings [35], [36]. Finally, with respect to the selected fluid properties, the fluid viscosity is 

varied from typical water viscosity values up to eight times higher in order to cover potential viscosity 

values for various types of wound exudates. As mentioned previously, there is a lack of qualitative 

information in the literature for exudate viscosity values. Therefore, the proposed range of viscosities 

was selected in order to account for watery up to more viscous exudates that are quantitatively 

referred in the literature ([18], [19]). Since the specific gravity of exudate is reported as been greater 

than 1.020 [19], the fluid density value in the present investigation was chosen to be at this low limit, 

being close to the density of water at ambient conditions. As for the surface tension the value of water 

at ambient conditions was also selected, since there is no information at all in the literature for surface 

tension values of wound exudate. 

As mentioned previously, in order to isolate the absorption phenomenon quasi-sessile droplet 

depositions are considered in the present numerical investigation. Therefore, a zero-impact velocity 

is considered in all cases. For this purpose, Ohnesorge (Oh) and Eötvos (Eo) numbers are utilised to 

describe the investigated phenomenon. The examined dimensionless numbers ranges are 0.0015 < Eo     
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< 0.15 and 0.0035 < Oh < 0.095 and these result due to the selected pore sizes and fluid viscosity 

ranges, as discussed previously, in order to be relevant to cases of wound exudate absorption into 

wound dressing capillaries. At this point, it should be mentioned that in future applications, also the 

concepts of liquid film instead of a drop as well as of multiple pores and pore networks worth to be 

examined to further extend the results of the present investigation, bringing them closer to the targeted 

application.  
 

 

2. Mathematical framework 

From a fluid-dynamics point of view, the aforementioned phenomenon is governed by the 

interaction of two immiscible fluids, with a clearly defined interface between them; Ambient air that 

pre-exists in the pore structure of the wound dressing at the moment of application and the liquid 

exudate that leaks out from the affected wound, usually with a relatively low flow rate. Hence, the 

actual resulting absorption rate is an interplay of the following mechanisms: 

• interface dynamics between a gaseous and a liquid fluid phase 

• capillary action within micro-passages 

• wettability  

For this purpose, an improved Volume Of Fluid (VOF) based model, which has been 

previously implemented in OpenFOAM CFD Toolbox (an open source CFD software), is utilised. In 

more detail, all the numerical simulations of the present work were performed with the finite volume–

based CFD code OpenFOAM (version 2.2.1), using a user-enhanced version of its original VOF-

based solver “interFoam”. For pressure-velocity coupling, the PISO (Pressure-Implicit with Splitting 

of Operators) scheme is applied. The transient terms in the equations are discretised using a second 

order, bounded, implicit scheme (Euler). The calculation time step is controlled by setting the 

maximum Courant number to 0.2. With this adaptive time-stepping technique, the time step is 

automatically varied from approximately 10−9 to 10−6 seconds for the overall simulation cases that 

are presented in the present paper. The gradient terms are discretised using a second-order, Gaussian 

integration with linear interpolation (Gauss linear). For the divergence terms, different discretisation 

schemes are applied for each term in the equations. In more detail, the convection term of Equation 

(2) is discretised using a “Gauss upwind” scheme. The ∇ ∙ (𝛼𝑈⃗⃗ )  term of Equation (3) is discretised 

using the “Gauss vanLeer” scheme, while the ∇ ∙ (𝛼(1 − 𝛼)𝑈𝑟) term is discretised using the “Gauss 

interfaceCompression” scheme which ensures the boundedness of the calculated volume fraction 

field. Finally, all Laplacian terms are discretised using the “Gauss Linear Corrected” scheme. Further 

details on the proposed discretisation schemes can be found in OpenFOAM documentation [37]. It 

should be mentioned that this was the optimum combination of discretisation schemes in order to 

maintain a balance between accuracy, convergence and numerical stability during the computations.  

With the VOF approach, the transport equation for the volume fraction, 𝛼, of the liquid phase 

is solved simultaneously with a single set of continuity and Navier–Stokes equations for the whole 

flow field. The corresponding volume fraction of the gas phase is simply calculated as (1 − 𝛼). The 

main underlying assumptions are that the two fluids are Newtonian, incompressible, and immiscible. 

The governing equations can be written as, 

∇ ∙ 𝑈⃗⃗ = 0 (1) 

𝜕𝜌𝑏𝑈⃗⃗ 

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑏𝑈⃗⃗ 𝑈⃗⃗ ) = −𝛻𝑝 + 𝛻 ∙ 𝜇𝑏(𝛻𝑈⃗⃗ + 𝛻𝑈𝑇) + 𝜌𝑏𝑓 + 𝐹𝑠 (2) 

𝜕𝑎

𝜕𝑡
+ ∇ ∙ (𝛼𝑈⃗⃗ ) − ∇ ∙ (𝛼(1 − 𝛼)𝑈𝑟) = 0 (3) 

where the bulk fluid properties (𝜌𝑏, 𝜇𝑏) are calculated as weighted averages of the liquid (𝜌𝑙, 𝜇𝑙) and 

gaseous (𝜌𝑔, 𝜇𝑔) phase properties as follows, 

𝜌𝑏 = 𝜌𝑙𝛼 + 𝜌𝑔(1 − 𝛼) (4) 

      𝜇𝑏 = 𝜇𝑙𝛼 + 𝜇𝑔(1 − 𝛼) (5) 
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 6 

The surface tension force is modelled as a volumetric force using the Continuum Surface 

Force (CSF) method by Brackbill et al. [38] applying the following equation 

𝐹𝑠 = 𝛾ĸ(∇𝛼) (6) 

ĸ = ∇ ∙ (
∇𝛼̃

|∇𝛼̃|
) (7) 

where, 𝛾 is the surface tension coefficient and ĸ is the curvature of the interface. As mentioned 

previously the utilized numerical framework constitutes an enhanced version [39] of the original 

VOF-based solver of OpenFOAM [37], that suppresses numerical artefacts of the original model, 

known as “spurious currents”. The proposed enhancement involves the calculation of the interface 

curvature ĸ using the smoothed volume fraction values 𝛼,̃ which are obtained from the initially 

calculated 𝛼 field, smoothing it over a finite region near the interface. All other equations are using 

the initially calculated (non-smoothed) volume fraction values of 𝛼.  

Furthermore, in order to accurately account for wettability effects, Kistler’s Dynamic Contact 

Angle (DCA) model [40], has been also implemented in the proposed VOF solver which calculates 

the DCA, 𝜃𝑑, using the Hoffman function, 𝑓𝐻𝑜𝑓𝑓, as follows:  

𝜃𝑑 = 𝑓𝐻𝑜𝑓𝑓[𝐶𝑎 + 𝑓𝐻𝑜𝑓𝑓
−1 (𝜃𝜀)] (8) 

where, 𝜃𝜖 is the equilibrium contact angle. The capillary number, 𝐶𝑎, is calculated with respect to the 

spreading velocity of the contact line a 𝑈CL and  𝑓𝐻𝑜𝑓𝑓
−1   is the inverse function of “Hoffman’s” 

empirical formulae which is calculated as shown below, 

𝑓𝐻𝑜𝑓𝑓 = 𝑎𝑐o𝑠 [1 − 2𝑡𝑎𝑛ℎ (5.16 (
𝑥

1 + 1.31𝑥0.99
)
0.706

)] (9) 

where x is equal to: 

 

𝑥 = 𝑓𝐻  [𝐶𝑎 + 𝑓𝐻
−1 (θeq)] (10) 

 

The capillary number is defined as  

𝐶𝑎 =
𝜇𝑢𝑐𝑙𝑖𝑛𝑒

𝛾
 (11) 

  
 

The equilibrium angle 𝜃𝜀 is replaced by either a limiting advancing (𝜃𝑎) or receding contact 

angle (𝜃𝑟), depending on the sign of the velocity vector at the contact line. 

Further details on the development and validation of the proposed numerical modelling 

framework can be found in [39], [41] and [42]. 

 

 

3. Numerical model validation 

In order to further validate the numerical model, for cases more relevant to the present 

investigation, its predictions have been compared against the experimental results of the work of 

Delbos et al. [33], for the case of a water droplet with a diameter of 2.5mm that impregnates into 

capillary glass tubes that have been plasma treated (hydrophilic surfaces). The length of the 

considered tubes is 5 cm long in each case with inner diameters of 0.20 mm, 0.44 mm and 1 mm. In 

order to reproduce the same conditions as in the proposed experiments, a dynamic viscosity 𝜇 =1 

mPas, a density of 𝜌 =1000 kg/m3 and a surface tension 𝛾 =70 mN/m were used in the numerical 

simulations for the liquid phase. As for the pre-existing gaseous phase in the considered domains, air 

properties at standard conditions were used. For the wettability characteristics, a static contact angle 

of 30 degrees and a contact angle hysteresis 𝑐𝑜𝑠𝜃𝑟 − 𝑐𝑜𝑠𝜃𝑎 of 0.3 were used in the simulations. The 

corresponding impact velocities for these three cases were 0.15 m/s, 1.00 m/s and 1.30 m/s, 

respectively. It should be highlighted at this point that due to lack of literature available experimental, 
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 7 

quasi-sessile droplet depositions on single cylindrical pores, these impact cases are considered 

instead, for validating the utilised numerical simulation framework. 

In the work of Antonini et al. [43], the values of 𝜃𝑎and 𝜃𝑟 for  water and glass have been 

measured experimentally to be equal to 48 and (less than) 5 degrees, respectively. Since these values 

satisfy the relationship among the three contact angles (constant, advancing and receding) that is 

found and reported in the work of Miyama et al. [44] (please see Equation 12 below), for the case of 

constant (equilibrium) contact angle of 𝜃𝑐  = 300, they are safely adopted as inputs for the numerical 

simulations of the present investigation: 

𝑐𝑜𝑠𝜃𝑐 =
𝑐𝑜𝑠𝜃𝑟 + 𝑐𝑜𝑠𝜃𝑎

2
 (12) 

 

The computational domain, the computational mesh and the applied boundary conditions are 

shown in Figure 1. Due to the axial symmetry of the investigated phenomenon, 2D axisymmetric 

simulations are performed. Therefore, a wedge type geometry is constructed for the computational 

domain, representing a 5 º wedge of the corresponding full 3D domain. A uniform, structured mesh 

is utilised. The results from the mesh independency study that are presented in the following section, 

indicated the use of a cell size of 2 m. A qualitative comparison of the numerical simulation 

predictions for successive time instances in relation to the corresponding experimental data [33], are 

depicted in Figures 2, 3 and 4, for the cases with pore radius 0.10 mm, 0.22 mm and 0.50 mm, 

respectively. As it is can be seen, there is a very good agreement between the numerical predictions 

and the experimental snapshots regarding the spatial and temporal evolution of the spreading as well 

as the penetrating droplet parts, in each case. Furthermore, it is evident that the numerical simulations 

successfully capture the development of the different two-phase flow regimes within the cylindrical 

tubes, in each case, that also Delbos et al. [33], have observed experimentally.  

In more detail, for pore radius 0.10 mm (Figure 2), both in the numerical predictions as well 

as in the experimental snapshots, a small part of the impacting drop penetrates the cylindrical pore, 

filling up the entire pore cross section, remaining connected with the spreading drop above the pore, 

for all stages. The penetration depth gradually increases with time. For the case where the pore radius 

is 0.22 mm (Figure 3), both in the numerical predictions as well as in the experimental snapshots, 

when the droplet at the top of the capillary reaches its maximum spread a temporary cleaving is 

observed and then at the recoiling stage of the droplet, liquid penetration resumes, causing the 

entrapment of an elongated air plug (dry patch) with the overall liquid column. Finally, for the case 

where the pore size is rt=0.50 mm (Figure 4), both in the numerical predictions as well as in the 

experimental snapshots, a slug of liquid that is disconnected from the rest of the drop is formed, due 

to a permanent cleaving, after the initial liquid penetration. For clarification purposes it should be 

mentioned that in all three figures (Figure 2, 3 and 4), as it is indicated with the red arrows in Figure 

2, in the experimental snapshots, below the cylindrical pore inlet, the colour representation for liquid 

and gas phases is reversed, with dark colour representing the gaseous phase and light colour 

representing the liquid phase. Above the pore inlet, the dark colour represents the liquid phase and 

the light colour the surrounding air. For the numerical simulation results however, a common colour 

code is used both above and below the pore inlet, with the dark colour representing the liquid phase 

and the light colour representing the gaseous phase. 
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 8 

 
Figure 1. Computational domain, computational mesh and boundary conditions. 

 

 
 

Figure 2. The results of the simulations at different time instances and the comparison with the experiments 

[33], for the case with tube radius 𝑟𝑡 = 0.10 mm and impact velocity 𝑣𝑖 =0.15 m/s. A small part of the 

impacting drop penetrates the cylindrical pore filling up the entire pore cross section, while remaining 

connected with the spreading drop above the pore, for all stages. The penetration depth gradually increases 

with time. 
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 9 

 
Figure 3. The results of the simulations at different time instances and the comparison with the experiments 

[33], for the case with tube radius 𝑟𝑡 = 0.22 mm and impact velocity 𝑣𝑖 =1.00 m/s. When the droplet at the 

top of the capillary reaches its maximum spread a temporary cleaving is observed and then at the recoiling 

stage of the droplet, liquid penetration resumes, causing the entrapment of an elongated air plug (dry patch) 

with the overall liquid column. 

 

  
Figure 4. The results of the simulations at different time frames and the comparison with the experiments [33], 

for the case with tube radius 𝑟 𝑡 = 0.50 mm and impact velocity 𝑣𝑖 =1.30 m/s. A slug of liquid that is 

disconnected from the rest of the drop is formed, due to a permanent cleaving, after the initial liquid 

penetration. 

 

A more quantitative comparison between the numerical and experimental results, for the case with 

pore size 𝑟 𝑡 = 0.50 mm and impact velocity 𝑣𝑖 =1.30 m/s, is conducted in Figure 5, where the 

position of the front meniscus scaled by the cylindrical tube (pore) radius z/rt is plotted as a function 

of the dimensionless time 𝜏 = t 𝛾 𝑐𝑜𝑠𝜃 2𝜇𝑟𝑡⁄ . 
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 10 

 
Figure 5. Quantitative comparison between the proposed numerical investigation results and the experimental 

data [33], for the case with tube radius 𝑟 𝑡 = 0.50 mm and impact velocity 𝑣𝑖 =1.30 m/s. Penetration depth z 

is scaled with the tube radius rt as a function of the dimensionless time  𝜏.  
 

As it can be observed, the proposed numerical model successfully captures the transient evolution of 

the penetrating liquid front. All the above results indicate that the proposed numerical simulation 

framework can safely be applied for the proposed parametric numerical investigations of the present 

paper that consider quasi-sessile droplet depositions that are absorbed within single cylindrical pores 

of the same or similar pore sizes. 
 
 

4. Mesh Independence Study 

As mentioned previously, in order to adopt the utilised computational mesh characteristics, 

for the simulations presented in the paper, a mesh-independence study was conducted. In more detail, 

three different mesh densities were used for the case with tube radius 0.1 mm and impact velocity 

𝑣𝑖 0.15 m/s, consisting of 63,439, 253,125 and 1,012,500 cells. The corresponding uniform cell sizes 

for these three meshes are 4 m, 2 m and 1 m, respectively. As it can be observed from Figure 6, 

the coarse mesh predictions (63,439 cells) slightly deviate from the other two mesh cases. However, 

the results between the medium (253,125 cells) and fine meshes (1,012,500), are almost identical. 

There are some small differences that can be considered negligible for the purposes of the present 

investigation. If the finer mesh was used instead of the medium one it would not add considerably 

more details, but it would significantly increase the computational time.  Therefore, the medium mesh 

density can safely be selected as the mesh independent solution, for the purposes of the present 

parametric numerical investigation. 

 

 
Figure 6. Mesh Independence Study: comparison of numerical predictions between the adopted mesh, a finer 

and a coarser mesh.     
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
21

82
8



 11 

5. Parametric Numerical Simulations 

In the present section of the paper, the previously adopted numerical simulation set-up is 

further utilised in order to perform two different series of parametric numerical simulations. The main 

aim is to investigate the effects of pore size, liquid viscosity and initial droplet diameter for quasi-

sessile droplets that are left to settle above a cylindrical pore with the bottom tip of the droplet in 

contact with the pore inlet (i.e. zero impact velocity). This is done in order to isolate, identify and 

quantify the absorption phenomenon without any initial momentum, as in the case of impacting 

droplets, in previous investigations. Furthermore, as reported in the literature typical exudate flow 

rates are really low, ranging from 0.2 mL/hr up to 0.4 mL/hr [45], which for typical pore sizes of 

wound dressings result in negligible values of velocity.  

 

5.1 Effects of pore size and liquid viscosity 

In order to investigate, identify and quantify the absorption characteristics of a liquid drop 

into a cylindrical pore, 48 in total, 2D-Axisymmetric simulations have been conducted with a quasi-

sessile droplet of 2.5 mm in diameter, released in contact with the inlet of a pore, for cases with pore 

radius 0.05 mm, 0.10 mm, 0.20 mm, 0.30 mm, 0.40 mm and 0.50 mm and kinematic viscosity 1.0 

x10-6 m2/s, 1.2 x10-6 m2/s, 1.5 x10-6 m2/s, 1.8 x10-6 m2/s, 2 x10-6 m2/s, 4 x10-6 m2/s, 6 x10-6 m2/s and 

8x10-6 m2/s. Details of the computational domain and the boundary conditions have already been 

illustrated in Figure 1, where the validation runs were analysed and presented. The overall cases 

simulated, and their main characteristics are summarised in Table I. All simulations were run for a 

total flow time of 50 ms or up to the time instance that the absorbed liquid front has reached the 

bottom end of the computational domain. However, in some cases, the droplet evolution comes to an 

equilibrium well before the 50 ms. A generalised schematic of the initial condition for these 

simulations is shown in Figure 7. It should be mentioned here, that in all of the simulated cases, apart 

from the liquid kinematic viscosity that constitutes one of the varied parameters, the rest of the fluid 

properties for the liquid phase and the gaseous phase remain unchanged and equal to the property 

values that were used for the validation runs.  

 

 
Table I. Main characteristics of simulated cases. 

Case Dpore 

[mm]  

𝝂   
[m2/s] 

Ddroplet 

[mm] 

Case Dpore 

[mm]  

𝝂  

[m2/s] 

Ddroplet 

[mm] 

Case Dpore 

[mm]  

𝝂  

[m2/s] 

Ddroplet 

[mm] 

C1-1 0.1 1.0x10-6 2.5 C3-1 0.4 1.0x10-6 2.5 C5-1 0.8 1.0x10-6 2.5 

C1-2 1.2x10-6 C3-2 1.2x10-6 C5-2 1.2x10-6 

C1-3 1.5x10-6 C3-3 1.5x10-6 C5-3 1.5x10-6 

C1-4 1.8x10-6 C3-4 1.8x10-6 C5-4 1.8x10-6 

C1-5 2.0x10-6 C3-5 2.0x10-6 C5-5 2.0x10-6 

C1-6 4.0x10-6 C3-6 4.0x10-6 C5-6 4.0x10-6 

C1-7 6.0x10-6 C3-7 6.0x10-6 C5-7 6.0x10-6 

C1-8 8.0x10-6 C3-8 8.0x10-6 C5-8 8.0x10-6 

C2-1 0.2 1.0x10-6 C4-1 0.6 1.0x10-6 C6-1 1.0 1. 0x10-6 

C2-2 1.2 x10-6 C4-2 1.2x10-6 C6-2 1.2x10-6 

C2-3 1.5 x10-6 C4-3 1.5x10-6 C6-3 1.5x10-6 

C2-4 1.8x 10-6 C4-4 1.8x10-6 C6-4 1.8x10-6 

C2-5 2.0x 10-6 C4-5 2.0x10-6 C6-5 2.0x10-6 

C2-6 4.0x 10-6 C4-6 4.0x10-6 C6-6 4.0x10-6 

C2-7 6.0x 10-6 C4-7 6.0x10-6 C6-7 6.0x10-6 

C2-8 8.0x 10-6 C4-8 8.0x10-6 C6-8 8.0x10-6 
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Figure 7. Generalised schematic of initial condition for the considered numerical simulations (not to scale) 

 

Figures 8, 9, 12, 13, 14 and 17, illustrate the variation of the liquid volume fraction within the 

cylindrical pore (
𝑉𝑙𝑖𝑞𝑢𝑖𝑑

𝑉𝑝𝑜𝑟𝑒
) with respect to a dimensionless time , varying the liquid viscosity for 

different pore sizes. It should be mentioned that the graph on the left, groups the points with respect 

to each viscosity value (different series for each viscosity), while the graph on the right, uses a general 

scatter depending on the observed flow regime, in order for best-fit lines to be obtained. Focusing 

first on the small pore sizes among the ones examined, in Figures 8 (rpore=0.05 mm) and 9 (rpore=0.1 

mm), it is evident that the points of liquid volume fraction within the pore versus dimensionless time, 

despite the variation of the liquid viscosity, are all collapsing on a single curve with a relatively low 

scatter, for each particular pore value. The best fit line in each case, can be described by a different 

power law with a very good fit. In more detail, as it can be seen from the graphs, the R2 value is 

0.9775 and 0.9736 for the cases with pore radius 0.05mm and 0.1mm, respectively.  

 

          
 Figure 8. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.05mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 
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 13 

     
Figure 9. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.1 mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 

 

Furthermore, examining macroscopic, flow visualisation results for all these 16 cases (Figures 

8 and 9),  it is evident from Figure 10 (rpore=0.05 mm) and Figure 11(rpore=0.1 mm) that for the two 

smaller pore sizes from the ones examined, the evolution of the liquid penetration within the 

cylindrical pore follows a single flow regime, characterised by bubble entrapment, despite the 

variation of the liquid viscosity. In more detail, the liquid droplet penetrates the cylindrical pore, 

filling it up progressively, while at some time instance in each case, a pinch-off event that occurs at 

the liquid column directly above the pore, entraps a small air bubble, that then disintegrates into 

smaller bubbles as it is absorbed within the pore. These smaller bubbles are then penetrating further 

into the pore. At this point, it should be mentioned that the light grey spots that appear in the main 

drop evolution above the pore at some time instances in Figures 10, 11, 15, 16, 18-20 are 

lighting/shadowing effects from the postprocessor and not air bubbles. 

 

 
Figure 10. Indicative droplet evolution for case with pore radius, rpore=0.05 mm, and liquid kinematic viscosity, 

ν=1x10-6 m2/s (Case 1-1 from Table 1). 
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Figure 11. Indicative droplet evolution for case with pore radius, rpore=0.1 mm, and liquid kinematic viscosity, 

ν=1x10-6 m2/s (Case 2-1 from Table 1). 

 

Focusing now on medium pore sizes among the ones examined, in Figure 11 (rpore=0.2 mm),  

Figure 12 (rpore=0.3 mm) and Figure 13 (rpore=0.4 mm), it is evident that the points of liquid volume 

fraction within the pore versus dimensionless time are, depending on the viscosity value, collapsing 

on two different  curves, for each pore size, again with a relatively low scatter.  The best fit lines for 

cases of pore radius of rpore=0.2 and rpore=0.3, can be described by two different power laws, in each 

case, with a good fit in general that progressively weakens with the increase of the pore radius (R2 

values are 0.9538 and 0.9663 for the case with pore radius 0.2mm, and 0.9181 and 0.9203 for the 

case with pore radius 0.3mm). For pore radius rpore=0.4, however, the best fit lines for the 

corresponding two curves are best described by a second order polynomial and not by a power law.  

The fit in this case is quite good (R2 values are 0.9554 and 0.9864). It should be mentioned that in all 

these three pore size cases, the black best fit line corresponds to high viscosity values 

(4 × 10−6 𝑚2/𝑠 ≤ 𝜈 ≤ 8 × 10−6 𝑚2/𝑠) and the red one corresponds to low viscosity values 

(1 × 10−6 𝑚2/𝑠 ≤ 𝜈 ≤ 2 × 10−6 𝑚2/𝑠). This indicates that irrespectively of the pore radius for the 

proposed range of radii (0.2 mm ≤ rpore≤ 0.4 mm) there seems to be a threshold viscosity value that 

changes the liquid absorption rate.  
 

        
Figure 12. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.2 mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 
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Figure 13. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.3 mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 

 

 

     
Figure 14. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.4 mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 

 

Examining macroscopic flow visualisation results for all these 24 cases (Figures 12, 13 and 14), it is 

evident from the indicatively selected cases illustrated in Figure 15 and Figure 16 that for each pore 

size, depending on the aforementioned viscosity ranges, two distinct droplet evolution regimes are 

present. In more detail, the low viscosity range related regime is the same as the one described 

previously in Figures 10 and 11, which is indicatively shown here in Figure 15, for a particular 

viscosity value and pore size (Case 3-1 from Table 1). However, for the high viscosity range related 

regime, not any droplet pinch-off is observed for all considered cases and therefore the liquid that is 

absorbed, penetrates progressively within the pore without any air bubble entrapment. This regime is 

indicatively shown for a particular viscosity value and pore size (Case 3-8 from Table 1), in Figure 

16. It should be mentioned that for the case illustrated in Figure 16, the droplet evolution comes to a 

quasi-equilibrium state at t = 30 ms, with negligible change up to 50 ms. 
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Figure 15. Indicative droplet evolution for case with pore radius, rpore=0.2 mm, and liquid kinematic viscosity, 

ν=1x10-6 m2/s (Case 3-1 from Table 1). 

 

 
Figure 16. Indicative droplet evolution for case with pore radius, rpore=0.2 mm, and liquid kinematic viscosity, 

ν=8x10-6 m2/s (Case 3-8 from Table 1). 

 

Finally, focusing on the highest pore size among the ones examined, in Figure 17 (rpore=0.5 

mm), it is evident that the points of liquid volume fraction within the pore versus dimensionless time 

are, depending on the viscosity value, collapsing on three different  curves, for the particular pore 

size, again with a relatively low scatter. The best-fit lines can be described by three different second 

order polynomial relationships. In more detail, as it can be seen from the graphs in Figure 17, the 

corresponding R2 values are 0.9707 for the blue best-fit line that corresponds  to low viscosities 

(1 × 10−6 𝑚2/𝑠 ≤ 𝜈 ≤ 1.2 × 10−6 𝑚2/𝑠), 0.8348 for the green best-fit line that corresponds to 

medium viscosities (1.5 × 10−6 𝑚2/𝑠 ≤ 𝜈 ≤ 4 × 10−6 𝑚2/𝑠) and 0.9939 for the black best-fit line 

that corresponds to high viscosities (6 × 10−6 𝑚2/𝑠 ≤ 𝜈 ≤ 8 × 10−6 𝑚2/𝑠), respectively. This 

indicates that for relatively large pore radii (rpore≥0.5mm), there seems to be two different threshold 

viscosity values that change the liquid absorption rate.  
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Figure 17. The liquid volume fraction inside the capillary against dimensionless time, varying the liquid 

viscosity for pore radius of 0.5 mm (Please refer to Table 1 for the cases’ characteristics). Cases grouped by 

viscosity (left); cases grouped by observed flow regime (right). 

 

 

Examining macroscopic flow visualisation results for these last eight cases (Figure 17), it is evident 

from the indicatively selected cases illustrated in Figures 18, 19 and 20 that for the particular pore 

size, depending on the aforementioned viscosity ranges, three distinct droplet evolution regimes are 

present. In more detail, the low viscosity range related regime is depicted indicatively in Figure 18 

(Case 6-1 from Table 1) where, as it can be observed,  the liquid droplet penetrates the cylindrical 

pore, filling it up progressively, while at some time instance, a pinch-off event that occurs in 

combination with a subsequent cleaving event, entraps an elongated air plug that progressively 

penetrates further into the pore. At the end, a second cleaving event is also observed. For the medium 

viscosity range related regime, the observed droplet evolution is the same as the regime presented 

and described in Figure 10 but accompanied by a cleaving event at the end. This is indicatively shown 

in Figure 19 for a particular viscosity value (Case 6-4 from Table 1). Finally, for the high viscosity 

range related regime, the observed droplet evolution is the same as the regime presented in Figure 16, 

where no bubble entrapment occurs. This is illustrated indicatively for a particular viscosity value 

also for the considered pore radius (rpore = 0.5mm) in Figure 20 (Case 6-8 from Table 1). It should be 

mentioned that for the case illustrated in Figure 20 the droplet evolution comes to a quasi-equilibrium 

state at t = 30 ms, with negligible change up to 50 ms. 

 

 
Figure 18. Indicative droplet evolution for case with pore radius, rpore=0.5 mm, and liquid kinematic viscosity, 

ν=1x10-6 m2/s (Case 6-1 from Table 1).     
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Figure 19. Indicative droplet evolution for case with pore radius, rpore=0.5 mm, and liquid kinematic viscosity, 

ν=1.8x10-6 m2/s (Case 6-4 from Table 1). 

 

 
Figure 20. Indicative droplet evolution for case with pore radius, rpore=0.5 mm, and liquid kinematic viscosity, 

ν=8x10-6 m2/s (Case 6-8 from Table 1). 

 

From all the above, it can be concluded that among all of the 48 examined quasi-sessile drop 

cases, four distinct droplet flow regimes have been identified that are directly linked with the distinct 

droplet absorption rates that were identified from the simulation predictions,  

• bubble entrapment;  

• bubble entrapment and cleaving;  

• slug-plug flow and cleaving and;  

• no entrapment. 

For small pore sizes, a single flow regime is identified for all of the examined liquid 

viscosities. For medium pore sizes, two distinct flow regimes are revealed, one for low and one for     
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high liquid viscosities. Finally, for large pores three distinct flow regimes occur, for low, medium 

and high viscosity value ranges. In each case relationships have been derived, using best-fit lines, that 

can predict the absorption rates for particular values of pore size and liquid viscosity. It is 

characteristic that for small pore sizes (0.05mm and 0.1mm, in Figures 8 and 9), the resulting relationship 

from the best fit lines resembles the classic Washburn’s equation for capillary flows [46], since the liquid 

volume fraction is approximately proportional to the square root of the dimensionless time. However, for 

higher pore sizes (0.2mm and 0.3 mm, in Figures 12 and 13) the data deviate from the proposed proportionality. 

This indicates that the liquid penetration behaviour that is described by Washburn’s equation is valid for 

relatively low pore sizes.  
 

5.2 Effect of droplet size 

In order to also investigate the effect of the drop size on the droplet absorption characteristics, 

18 additional simulations have been performed for droplet diameter 1.5mm and 3.5mm and for the 

cases with pore radius 0.05mm, 0.3mm and 0.5mm and with kinematic viscosities 10-6 m2/s, 4x10-6 

m2/s and 8x10-6 m2/s.  The results from this parametric analysis investigation are depicted in Figure 

21, where the 27 in total cases are examined (including the corresponding cases for droplet diameter 

of 2.5 mm, from the previous parametric analysis in sub-section 5.1). As it can be observed, for the 

cases with small pore diameter (rpore=0.05 mm) and high values of viscosity (yellow curves), the 

droplet size does not play a significant role in the droplet absorption characteristics. However, as the 

viscosity values decrease (orange and blue curves) the effect of the initial droplet diameter 

progressively becomes more significant, especially for the latter stages of the droplet evolution. For 

medium pore sizes (rpore=0.3 mm), as it can be observed the variation of the droplet diameter has an 

insignificant effect in the droplet absorption rate. It should be highlighted here that the horizontal 

segments of the curves, for the cases of small droplet diameter (D=1.5mm) and for low and medium 

viscosities (yellow and orange dashed line curves), correspond to the time periods that almost the 

entire volume of the initial droplet has been completely absorbed within the pore accompanied by a 

permanent cleaving. Therefore, during this stage, the volume fraction of the liquid within the pore 

remains constant as the further absorption of the droplet has been interrupted by the proposed cleaving 

event.  Before these time periods, the droplet absorption rate is almost the same for all three values 

of the initial droplet diameter. Finally, for bigger pore sizes (rpore=0.5 mm), it is characteristic that for 

the smallest droplet diameter the viscosity does not play any role at all since the considered droplet 

in all of the three examined viscosity cases, shows almost the same absorption rate and in all three 

cases it is completely absorbed within the pore at similar time instances. For medium and high 

viscosities, taking into consideration the two highest droplet diameters, it can be seen that the droplet 

diameter variation does not affect the absorption rate. The horizontal segment in the case with 

D=2.5mm and medium viscosity (orange curve), that starts at point g, corresponds to the time period 

after a final permanent cleaving event that interrupts the further absorption of the droplet within the 

pore. Finally, for low viscosity and taking into consideration the two highest droplet diameters, the 

initial stages of the droplet absorption almost coincide, but after a particular time instance a droplet 

break-up/pinch-off event occurs (points a and c in the graph) that is accompanied by a subsequent 

merging of the initially pinched-off droplet (points b and d) back to the mother droplet (12ms and 

16ms for the 2.5mm droplet, and 17ms and 22.5ms for the 3.5mm droplet) occurs, encapsulating an 

air plug within the liquid flow. Between these two subsequent events, the liquid absorption within the 

pore pauses and resumes. As it can be seen, this pause happens at different stages for the two different 

initial droplet diameters, creating the observed deviations in the resulting curves. However, it is 

characteristic that the resumed absorption stages in each case still have similar rates that are almost 

the same with the initial absorption rate. Finally, the horizonal segments that begin at points f and e, 

correspond to the final permanent cleaving stages, in each case. 
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Figure 21. The liquid volume fraction inside the capillary against time, varying the liquid viscosity and the 

droplet diameter for three different pore sizes. 

 

Summarising, in general, the initial droplet diameter does not seem to significantly influence 

the liquid absorption rate, apart from cases of small pore size and low viscosity liquids. Finally, it 

should also be mentioned that the previously identified droplet absorption regimes for the initial 

droplet diameter of D=2.5mm (Sub-section 5.1), depending on the pore size and liquid viscosity, are 

also respected by the smaller and larger droplet diameter cases that were examined in the present 

subsection (Sub-section 5.2).  

 

 

6. Mapping of Flow Regimes 

As mentioned in the previous section, among all of the simulations presented and discussed 

in the present paper four distinct flow regimes have been identified that depend on the pore size and 

the liquid viscosity (Fig. 22); a) bubble entrapment, b) bubble entrapment and cleaving, c) slug-plug 

flow and cleaving and, d) no entrapment. It is reasonable to assume that the most desired regimes for 

wound healing purposes, in order to maximise the would exudate absorption into the pores of the 

wound dressing, and hence, keep it saturated (as much as possible), are the “no entrapment” regime 

as well as the “bubble entrapment regime”, where only small air bubbles are entrapped into the 

penetrating liquid. On the contrary, the other two regimes (“bubble entrapment and cleaving” and 

“slug-plug flow and cleaving”) should not be desired, due to the fact that quite large quantity of air 

penetrates into the pores and therefore the wound dressing might not be saturated enough, in order to 

keep the wound moist. Hence, ideally, there should be critical limits in characteristic dimensionless 

parameters that define the desired flow conditions.  

Following a dimensional analysis, a flow map with the aforementioned regimes has been 

constructed, using the data from all 66 simulations, and calculating the corresponding Eötvos 

numbers (Eo) and the Ohnesorge numbers (Oh), using Eq.13 and Eq. 14, respectively,  

𝐸𝑜 =
Δ𝜌𝑔𝐿2

𝛾
 (13) 

𝑂ℎ =
𝜇

√𝜌𝛾𝐿
 (14) 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
21

82
8



 21 

where Δρ is the difference in density between the two phases, g the gravitational acceleration, μ is the 

dynamic viscosity of the liquid, ρ is the density of the liquid, 𝛾 is the surface tension and L is the 

diameter of the pore. The resulting flow map is presented in Figure 23. 

  

 
Fig. 22. Indicative snapshots from the last stages of the identified flow regimes; (a) bubble entrapment, (b) 

bubble entrapment and cleaving, (c) slug-plug flow and cleaving and (d) no entrapment. 
 

 
  Figure 23.  Flow map with different regimes; Ohnesorge Number versus Eötvos Number. 

 

As it can be seen, the previously identified, presented and discussed flow regimes are grouped 

into a flow map with well-defined boundaries. For the examined dimensionless number ranges 

“bubble entrapment” seems to be the prevailing regime, ranging between 0.0015 < Eo < 0.09 and 

0.004 < Oh < 0.095, with “no entrapment” appearing for 0.012 < Eo < 0.15 and 0.022 < Oh < 0.05, 

“bubble entrapment and cleaving” appearing for Eo > 0.15 and 0.0055< Oh <0.016 and “slug-plug 
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flow” appearing for Eo > 0.15 and Oh < 0.0035. It should be highlighted here that the dotted and 

solid line circles mark the cases with the same Eo and Oh numbers but for initial droplet diameters 

of 1.5 mm and 3.5 mm, respectively. This indicates that the variation of the droplet initial diameter 

does not affect the resulting flow regimes.  

It is quite clear from the diagram of Figure 23, that there seems to be a critical Eo number of 

𝐸𝑜 = 0.1. For 𝐸𝑜 ≤ 0.1, irrespectively of the Oh number the prevailing flow regimes are either “no 

entrapment” or “bubble entrapment” that constitute the desired condition. For 𝐸𝑜 > 0.1, apart from 

the “no entrapment” regime that it is desired, the “bubble entrapment and cleaving” and the “slug-

plug flow and cleaving” flow regimes that are not desired might also appear, depending on the 

viscosity value of the wound exudate. Hence, solving Equation (13) with respect to the characteristic 

length (L), which in effect is the pore diameter 𝑑𝑝𝑜𝑟𝑒, the following condition is derived: 

𝑑𝑝𝑜𝑟𝑒 ≤ √
0.1𝛾

Δ𝜌𝑔
 (14) 

The above condition can constitute a valuable indication for the most appropriate wound 

dressing class selection (selecting the appropriate wound dressing porosity), through a measurement 

of the physical properties for each particular type of wound exudate.  
 

7. Conclusions 
 

The ultimate aim of the present investigation is to understand the effect of pore size and liquid 

viscosity on the main absorption characteristics within porous domains, which are of direct interest 

for wound dressing applications that constitute the main motivation for this study. For this purpose, 

a simplified analogue of the proposed problem, considering non-impacting, quasi-sessile droplets that 

are absorbed by capillary action within single pores, is investigated for the first time, using numerical 

simulations. In more detail, an enhanced, user-defined, Volume Of Fluid (VOF) model that has been 

developed in OpenFOAM is used. Despite the fact that the utilised enhanced numerical simulation 

framework, has been widely validated in the past by the authors for various applications of droplet 

and bubble dynamics, a further validation using literature available experiments on droplet impacting 

single cylindrical pores, is initially conducted. Then, two different series of parametric numerical 

simulations, investigating the effects of pore size and liquid viscosity as well as the effect of initial 

droplet diameter, are conducted, but for quasi-sessile drops in order to study the absorption 

characteristics without any initial momentum as in the case of impacting droplets in previous 

investigations. From the overall presentation and analysis of the numerical results the following worth 

mentioning specific conclusions are drawn: 

 

• Distinct droplet absorption rates have been identified and specific relationships have been 

derived, using best-fit lines, that can predict the absorption rates for particular values of pore size 

(i.e. wound dressing type) and liquid viscosity (i.e. wound exudate class). These distinct droplet 

absorption rates are directly linked with four different droplet evolution regimes: a) bubble 

entrapment, b) bubble entrapment and cleaving, c) slug-plug flow and cleaving and, d) no 

entrapment.  

• Through dimensional analysis, these distinct flow regimes are grouped into a flow map with 

well-defined boundaries. For the examined ranges the “bubble entrapment” regime is the 

prevailing one, ranging between 0.0015 < Eo < 0.09 and 0.004 < Oh < 0.095, with “no 

entrapment” regime appearing for 0.012 < Eo < 0.15 and 0.022 < Oh < 0.05, “bubble entrapment 

and cleaving” regime appearing for Eo > 0.15 and 0.0055< Oh <0.016 and “slug-plug flow” 

regime appearing for Eo > 0.15 and Oh < 0.0035. 

• The initial droplet diameter does not influence significantly the resulting liquid absorption 

characteristics, apart from cases of small pore size and low viscosity liquids. This is also 

confirmed by the fact that different initial droplet diameters fall under the same flow regime, for 

the same Eo and Oh numbers, considering the pore diameter as the characteristic length.      
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• Finally, from the mapping of the identified flow regimes, a valuable conditional relationship that 

links the appropriate pore diameter of the wound dressing with the physical properties of the 

wound exudate, valid for variable wound exudate viscosities, is derived.  

In general, through the present investigation, it is evident that the liquid viscosity as well as 

the pore diameter are both important controlling parameters as they are directly responsible for the 

developed liquid absorption regimes and the resulting absorption rates. This is an important finding 

for wound healing purpose applications. Moreover, it is evident that the proposed numerical 

simulation framework constitutes an important tool that can provide valuable insight, quantifying in 

detail the underpinned phenomena for liquid absorption characteristics into porous materials. In the 

future, the effect of the wettability characteristics on the penetration of a quasi-sessile droplet in a 

single capillary should also be investigated and the present investigation results should be extended 

from single to multiple pores or even more complex pore networks. Furthermore, the concept of a 

liquid film instead of a drop should also be studied in order to move even closer to the targeted 

application.  
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