390 research outputs found

    On the Hilbert scheme of curves in higher-dimensional projective space

    Full text link
    In this paper we prove that, for any n3n\ge 3, there exist infinitely many rNr\in \N and for each of them a smooth, connected curve CrC_r in r\P^r such that CrC_r lies on exactly nn irreducible components of the Hilbert scheme \hilb(\P^r). This is proven by reducing the problem to an analogous statement for the moduli of surfaces of general type.Comment: latex, 12 pages, no figure

    From music to mathematics and backwards: introducing algebra, topology and category theory into computational musicology

    Get PDF
    International audienceDespite a long historical relationship between mathematics and music, the interest of mathematicians is a recent phenomenon. In contrast to statistical methods and signal-based approaches currently employed in MIR (Music Information Research), the research project described in this paper stresses the necessity of introducing a structural multidisciplinary approach into computational musicology making use of advanced mathematics. It is based on the interplay between three main mathematical disciplines: algebra, topology and category theory. It therefore opens promising perspectives on important prevailing challenges, such as the automatic classification of musical styles or the solution of open mathematical conjectures, asking for new collaborations between mathematicians, computer scientists, musicologists, and composers. Music can in fact occupy a strategic place in the development of mathematics since music-theoretical constructions can be used to solve open mathematical problems. The SMIR project also differs from traditional applications of mathematics to music in aiming to build bridges between different musical genres, ranging from contemporary art music to popular music, including rock, pop, jazz and chanson. Beyond its academic ambition, the project carries an important societal dimension stressing the cultural component of 'mathemusical' research, that naturally resonates with the underlying philosophy of the “Imagine Maths”conference series. The article describes for a general public some of the most promising interdisciplinary research lines of this project

    Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts

    Get PDF
    Background: Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods: A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results: The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion: The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 01 Dec 201

    Momentum-resolved linear dichroism in bilayer MoS2

    Get PDF
    In solid state photoemission experiments it is possible to extract information about the symmetry and orbital character of the electronic wave functions via the photoemission selection rules that shape the measured intensity. This approach can be expanded in a pump-probe experiment where the intensity contains additional information about interband excitations induced by an ultrafast laser pulse with tunable polarization. Here, we find an unexpected strong linear dichroism effect (up to 42.4%) in the conduction band of bilayer MoS2, when measuring energy- A nd momentum-resolved snapshots of excited electrons by time- A nd angle-resolved photoemission spectroscopy. We model the polarization-dependent photoemission intensity in the transiently populated conduction band using the semiconductor Bloch equations. Our theoretical analysis reveals a strongly anisotropic momentum dependence of the optical excitations due to intralayer single-particle hopping, which explains the observed linear dichroism

    Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: A randomized, controlled study

    Get PDF
    Background: The operating room environment is replete with stressors and distractions that increase the attention demands of what are already complex psychomotor procedures. Contemporary research in other fields (e.g., sport) has revealed that gaze training interventions may support the development of robust movement skills. This current study was designed to examine the utility of gaze training for technical laparoscopic skills and to test performance under multitasking conditions. Methods: Thirty medical trainees with no laparoscopic experience were divided randomly into one of three treatment groups: gaze trained (GAZE), movement trained (MOVE), and discovery learning/control (DISCOVERY). Participants were fitted with a Mobile Eye gaze registration system, which measures eye-line of gaze at 25 Hz. Training consisted of ten repetitions of the "eye-hand coordination" task from the LAP Mentor VR laparoscopic surgical simulator while receiving instruction and video feedback (specific to each treatment condition). After training, all participants completed a control test (designed to assess learning) and a multitasking transfer test, in which they completed the procedure while performing a concurrent tone counting task. Results: Not only did the GAZE group learn more quickly than the MOVE and DISCOVERY groups (faster completion times in the control test), but the performance difference was even more pronounced when multitasking. Differences in gaze control (target locking fixations), rather than tool movement measures (tool path length), underpinned this performance advantage for GAZE training. Conclusions: These results suggest that although the GAZE intervention focused on training gaze behavior only, there were indirect benefits for movement behaviors and performance efficiency. Additionally, focusing on a single external target when learning, rather than on complex movement patterns, may have freed-up attentional resources that could be applied to concurrent cognitive tasks. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors

    Get PDF
    Funding: We gratefully acknowledge funding from VILLUM FONDEN through the Young Investigator Program (Grant. No. 15375) and the Centre of Excellence for Dirac Materials (Grant.No. 11744), the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant Nos. DFF-9064-00057B and DFF-6108-00409). Access to the Artemis Facility was funded by STFC. I.M. acknowledges financial support by the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). The authors also acknowledge The Royal Society and The Leverhulme Trust.The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.3 eV between our systems. The transient conduction band signals decay on a sub-100 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe two timescales on the order of 200 fs and 50 ps, respectively, for the conduction band decay in MoS2. These multiple timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.Publisher PDFPeer reviewe
    corecore