36 research outputs found

    Plantar Vibrotactile Detection Deficits in Adults with Chronic Ankle Instability

    Get PDF
    Purpose: The purpose of this study was to investigate the vibrotactile detection thresholds of the plantar cutaneous afferents in subjects with chronic ankle instability compared with healthy control subjects. Methods: Eight adults with chronic ankle instability and eight adults with no ankle sprain history participated. Vibrotactile detection thresholds were assessed using a mechanical stimulus generator system, mounted onto an articulated microscope arm, which delivered sinusoidal vibrotactile inputs to the foot sole at three different sites: head of the first metatarsal, base of the fifth metatarsal, and the heel. Vibrotactile stimulation was delivered at a range of test frequencies that corresponded to the known responsiveness of cutaneous mechanoreceptors in the glabrous skin of the foot sole (10, 25, and 50 Hz). Probe displacement measures (dB) from the last eight displacement trials that contained 50% positive detection responses were averaged to obtain a single threshold estimate for each test frequency and site combination. Results: The results of this study indicate that no significant group-by-site interactions were found for any test frequencies (P \u3e 0.29). However, group main effects were present at the 10-Hz (P \u3c 0.0001), 25-Hz (P = 0.03), and 50-Hz (P = 0.04) test frequencies, indicating that subjects with chronic ankle instability had significantly higher detection thresholds or less sensitivity when stimulation sites were pooled. Conclusions: The results of this study indicate that subjects with chronic ankle instability may demonstrate decreased sensitivity on the plantar surface of the foot. These alterations in plantar cutaneous somatosensation may help explain the underlying mechanisms associated with the prolonged sensorimotor system impairments in postural control and gait commonly exhibited by people with chronic ankle instability

    Two-week joint mobilization intervention improves self-reported function, range of motion, and dynamic balance in those with chronic ankle instability

    Get PDF
    We examined the effect of a 2-week anterior-to-posterior ankle joint mobilization intervention on weight-bearing dorsiflexion range of motion (ROM), dynamic balance, and self-reported function in subjects with chronic ankle instability (CAI). In this prospective cohort study, subjects received six Maitland Grade III anterior-to-posterior joint mobilization treatments over 2 weeks. Weightbearing dorsiflexion ROM, the anterior, posteromedial, and posterolateral reach directions of the Star Excursion Balance Test (SEBT), and self-reported function on the Foot and Ankle Ability Measure (FAAM) were assessed 1 week before the intervention (baseline), prior to the first treatment (pre-intervention), 24–48 h following the final treatment (post-intervention), and 1 week later (1-week follow-up) in 12 adults (6 males and 6 females) with CAI. The results indicate that dorsiflexion ROM, reach distance in all directions of the SEBT, and the FAAM improved (p < 0.05 for all) in all measures following the intervention compared to those prior to the intervention. No differences were observed in any assessments between the baseline and pre-intervention measures or between the postintervention and 1-week follow-up measures (p > 0.05). These results indicate that the joint mobilization intervention that targeted posterior talar glide was able to improve measures of function in adults with CAI for at least 1 week

    Subcutaneous Neurotophin 4 Infusion Using Osmotic Pumps or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles

    Get PDF
    Laryngeal dysfunction in the elderly is a major cause of disability, from voice disorders to dysphagia and loss of airway protective reflexes. Few, if any, therapies exist that target age-related laryngeal muscle dysfunction. Neurotrophins are involved in muscle innervation and differentiation of neuromuscular junctions (NMJs). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. The neuromuscular junctions (NMJs) become smaller and less abundant in aging rat laryngeal muscles, with evidence of functional denervation. We explored the effects of NTF4 for future clinical use as a therapeutic to improve function in aging human laryngeal muscles. Here, we provide the detailed protocol for systemic application and direct injection of NTF4 to investigate the ability of aging rat laryngeal muscle to remodel in response to NTF4 application. In this method, rats either received NTF4 either systemically via osmotic pump or by direct injection through the vocal folds. Laryngeal muscles were then dissected and used for histological examination of morphology and age-related denervation

    Perceived Exercise Habits of Individuals with Parkinson’s Disease Living in the Community

    Get PDF
    Context Exercise has been shown to improve gait in individuals with Parkinson’s disease (PD). Stepping practice at higher intensity levels has been suggested as a beneficial treatment option to improve gait in the neurological population. Unfortunately, this mode is poorly understood and underutilized within the PD population. Information on what individuals with PD are doing for exercise would be beneficial to help tailor exercise programs to improve gait and provide exercise options in the community for intensity-based exercise. Objective To investigate the current exercise habits of individuals living with PD in the community aimed at improving walking and to understand the impact of perceived intensity on daily exercise practices. Design, setting, participants One hundred thirty-eight individuals with PD living in the community were surveyed online regarding their current exercise habits. Main outcome measure A total of 22 questions aimed to understand exercise selection, focus, and perceived intensity. Questions asked basic demographic, symptom presentation and management of disease related symptoms that were present while living with PD. Exercise questions focused understanding participants current function level, practice exercise habits and perceived levels of exercise intensity during daily routines. Results Of the 138 individuals surveyed for this preliminary study, eighty-seven percent of individuals with PD participated in exercise with seventy-five percent choosing walking as a mode for exercise. Sixty-five percent of the respondents noted that despite exercise, their walking speed and endurance has worsened since diagnosis. Eighty-one percent perceived exercising at moderate intensity levels, however little provocation of intensity symptoms was noted. Conclusion Our preliminary study survey results suggest that individuals with PD are exercising but not at high enough intensity levels to promote improvements in gait performance. Individuals with PD may need to be pushed at higher intensity levels, beyond their voluntary limits, to induce gait performance changes. These findings can provide a foundation for future fitness interventions within this population to target improving gait

    Enhancement of Aging Rat Laryngeal Muscles with Endogenous Growth Factor Treatment

    Get PDF
    Clinical evidence suggests that laryngeal muscle dysfunction is associated with human aging. Studies in animal models have reported morphological changes consistent with denervation in laryngeal muscles with age. Life‐long laryngeal muscle activity relies on cytoskeletal integrity and nerve–muscle communication at the neuromuscular junction (NMJ). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. We hypothesized that treatment with neurotrophin 4 (NTF4) would modify the morphology and functional innervation of aging rat laryngeal muscles. Fifty‐six Fischer 344xBrown Norway rats (6‐ and 30‐mo age groups) were used to evaluate to determine if NTF4, given systemically (n = 32) or directly (n = 24), would improve the morphology and functional innervation of aging rat thyroarytenoid muscles. Results demonstrate the ability of rat laryngeal muscles to remodel in response to neurotrophin application. Changes were demonstrated in fiber size, glycolytic capacity, mitochondrial, tyrosine kinase receptors (Trk), NMJ content, and denervation in aging rat thyroarytenoid muscles. This study suggests that growth factors may have therapeutic potential to ameliorate aging‐related laryngeal muscle dysfunction

    Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts

    Get PDF
    Background: Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods: A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results: The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion: The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 01 Dec 201

    Switching of the electron-phonon interaction in 1T-VSe2 assisted by hot carriers

    Get PDF
    Funding: We gratefully acknowledge funding from VILLUM FONDEN through the Young Investigator Program (Grant. No.15375) and the Centre of Excellence for Dirac Materials (Grant. No. 11744), the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant Nos. DFF-9064-00057B and DFF-6108-00409) and the Aarhus University Research Foundation. This work is also supported by National Research Foundation (NRF) grants funded by the Korean government (nos. NRF-2020R1A2C200373211 and 2019K1A3A7A09033389) and by the International MaxPlanck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). The authors also acknowledge The Royal Society and The Leverhulme Trust. R.S acknowledges financial support provided by the Ministry of Science and Technology in Taiwan under project number MOST-108-2112-M-001-049-MY2 & MOST 109-2124-M-002-001 and Sinica funded i-MATE financial Support AS-iMATE-109-13. Access to the Artemis Facility was funded by STFC. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.We apply an intense infrared laser pulse in order to perturb the electronic and vibrational states in the three-dimensional charge density wave material 1T-VSe2. Ultrafast snapshots of the light-induced hot carrier dynamics and non-equilibrium quasiparticle spectral function are collected using time- and angle-resolved photoemission spectroscopy. The hot carrier temperature and time-dependent electronic self-energy are extracted from the time-dependent spectral function, revealing that incoherent electron-phonon interactions heat the lattice above the charge density wave critical temperature on a timescale of (200 ± 40)~fs. Density functional perturbation theory calculations establish that the presence of hot carriers alters the overall phonon dispersion and quenches efficient low-energy acoustic phonon scattering channels, which results in a new quasi-equilibrium state that is experimentally observed.Publisher PDFPeer reviewe

    Ultrafast triggering of insulator-metal transition in two-dimensional VSe2

    Get PDF
    Funding: VILLUM FONDEN through the Young Investigator Program (Grant. No. 15375) and the Centre of Excellence for Dirac Materials (Grant. No. 11744), the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant Nos. DFF-9064-00057B and DFF-6108-00409) and the Aarhus University Research Foundation. This work is also supported by National Research Foundation (NRF) grants funded by the Korean government (nos. NRF-2020R1A2C200373211 and 2019K1A3A7A09033389) and by the International Max PlanckResearch School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). The authors also acknowledge The Royal Society and The Leverhulme Trust.The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump–probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron–lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.PostprintPostprintPeer reviewe
    corecore