9 research outputs found

    Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties

    No full text
    OBJECTIVE: To describe a novel technique for clinical characterization of corneal biomechanics using non-invasive dynamic imaging. METHODS: Corneal deformation response during non contact tonometry (NCT) is monitored by ultra-high-speed (UHS) photography. The Oculus Corvis ST (Scheimpflug Technology; Wetzlar, Germany) has a UHS Scheimpflug camera, taking over 4,300 frames per second and of a single 8mm horizontal slit, for monitoring corneal deformation response to NCT. The metered collimated air pulse or puff has a symmetrical configuration and fixed maximal internal pump pressure of 25 kPa. The bidirectional movement of the cornea in response to the air puff is monitored. RESULTS: Measurement time is 30ms, with 140 frames acquired. Advanced algorithms for edge detection of the front and back corneal contours are applied for every frame. IOP is calculated based on the first applanation moment. Deformation amplitude (DA) is determined as the highest displacement of the apex in the highest concavity (HC) moment. Applanation length (AL) and corneal velocity (CVel) are recorded during ingoing and outgoing phases. CONCLUSION: Corneal deformation can be monitored during non contact tonometry. The parameters generated provide clinical in vivo characterization of corneal biomechanical properties in two dimensions, which is relevant for different applications in Ophthalmology

    9p24.1 alterations and programmed cell death 1 ligand 1 expression in early stage unfavourable classical Hodgkin lymphoma: an analysis from the German Hodgkin Study Group NIVAHL trial

    Get PDF
    High programmed cell death 1 ligand 1 (PD-L1) protein expression and copy number alterations (CNAs) of the corresponding genomic locus 9p24.1 in Hodgkin- and Reed-Sternberg cells (HRSC) have been shown to be associated with favourable response to anti-PD-1 checkpoint inhibition in relapsed/refractory (r/r) classical Hodgkin lymphoma (cHL). In the present study, we investigated baseline 9p24.1 status as well as PD-L1 and major histocompatibility complex (MHC) class I and II protein expression in 82 biopsies from patients with early stage unfavourable cHL treated with anti-PD-1-based first-line treatment in the German Hodgkin Study Group (GHSG) NIVAHL trial (ClinicalTrials.gov Identifier: NCT03004833). All evaluated specimens showed 9p24.1 CNA in HRSC to some extent, but with high intratumoral heterogeneity and an overall smaller range of alterations than reported in advanced-stage or r/r cHL. All but two cases (97%) showed PD-L1 expression by the tumour cells in variable amounts. While MHC-I was rarely expressed in >50% of HRSC, MHC-II expression in >50% of HRSC was found more frequently. No obvious impact of 9p24.1 CNA or PD-L1 and MHC-I/II expression on early response to the highly effective anti-PD-1-based NIVAHL first-line treatment was observed. Further studies evaluating an expanded panel of potential biomarkers are needed to optimally stratify anti-PD-1 first-line cHL treatment
    corecore