124 research outputs found

    A novel approach to sequence validating protein expression clones with automated decision making

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whereas the molecular assembly of protein expression clones is readily automated and routinely accomplished in high throughput, sequence verification of these clones is still largely performed manually, an arduous and time consuming process. The ultimate goal of validation is to determine if a given plasmid clone matches its reference sequence sufficiently to be "acceptable" for use in protein expression experiments. Given the accelerating increase in availability of tens of thousands of unverified clones, there is a strong demand for rapid, efficient and accurate software that automates clone validation.</p> <p>Results</p> <p>We have developed an Automated Clone Evaluation (ACE) system – the first comprehensive, multi-platform, web-based plasmid sequence verification software package. ACE automates the clone verification process by defining each clone sequence as a list of multidimensional discrepancy objects, each describing a difference between the clone and its expected sequence including the resulting polypeptide consequences. To evaluate clones automatically, this list can be compared against user acceptance criteria that specify the allowable number of discrepancies of each type. This strategy allows users to re-evaluate the same set of clones against different acceptance criteria as needed for use in other experiments. ACE manages the entire sequence validation process including contig management, identifying and annotating discrepancies, determining if discrepancies correspond to polymorphisms and clone finishing. Designed to manage thousands of clones simultaneously, ACE maintains a relational database to store information about clones at various completion stages, project processing parameters and acceptance criteria. In a direct comparison, the automated analysis by ACE took less time and was more accurate than a manual analysis of a 93 gene clone set.</p> <p>Conclusion</p> <p>ACE was designed to facilitate high throughput clone sequence verification projects. The software has been used successfully to evaluate more than 55,000 clones at the Harvard Institute of Proteomics. The software dramatically reduced the amount of time and labor required to evaluate clone sequences and decreased the number of missed sequence discrepancies, which commonly occur during manual evaluation. In addition, ACE helped to reduce the number of sequencing reads needed to achieve adequate coverage for making decisions on clones.</p

    Amygdala and subcortical vision: recognition of threat and fear

    Get PDF
    The amygdala (Am) is a relatively voluminous gray substance, located in the depth of the ventromedial temporal lobe. The Am has diverse afferent and efferent connections throughout the neuraxis, and is involved in the modulation of neuroendocrine functions, visceral effector mechanisms, and in complex patterns of behavior: learning and memory, aggression and defense, pain modulation, reproduction, food intake, etc. A recently revealed important function of the Am is that it acts as the brain 'lighthouse' which constantly monitors the environment for stimuli which signal a threat to the organism. The data from patients with extensive lesions of the striate cortex indicate that unseen fearful and fear-conditioned faces elicit increased Am responses. Thus, also extrageniculostriate pathways are involved. A multisynaptic pathway from the retina to the Am via the superior colliculus and several thalamic nuclei was recently suggested. We here present data based on retrograde neuronal labeling that the parabigeminal nucleus emits a substantial bilateral projection to the Am. This small cholinergic nucleus (Ch8 group) in the midbrain tegmentum is a subcortical relay visual center that is reciprocally connected with the superior colliculus. We suggest the existence of a second extrageniculostriate multisynaptic connection to Am: retina - superior colliculus - parabigeminal nucleus - Am. This pathway might be very effective since all tracts listed above are bilateral. The function of the Am by the rapid response to the sources of threat before conscious detection is significantly altered by various neuropsychiatric diseases.Biomedical Reviews 2008; 19: 1-16

    Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia plays a critical role in various cellular mechanisms, including proliferation and differentiation of neural stem and progenitor cells. In the present study, we explored the impact of lowered oxygen on the differentiation potential of human neural progenitor cells, and the role of erythropoietin in the differentiation process.</p> <p>Results</p> <p>In this study we demonstrate that differentiation of human fetal neural progenitor cells under hypoxic conditions results in an increased neurogenesis. In addition, expansion and proliferation under lowered oxygen conditions also increased neuronal differentiation, although proliferation rates were not altered compared to normoxic conditions. Erythropoietin partially mimicked these hypoxic effects, as shown by an increase of the metabolic activity during differentiation and protection of differentiated cells from apoptosis.</p> <p>Conclusion</p> <p>These results provide evidence that hypoxia promotes the differentiation of human fetal neural progenitor cells, and identifies the involvement of erythropoietin during differentiation as well as different cellular mechanisms underlying the induction of differentiation mediated by lowered oxygen levels.</p

    Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community

    Get PDF
    The Protein Structure Initiative Material Repository (PSI-MR; http://psimr.asu.edu) provides centralized storage and distribution for the protein expression plasmids created by PSI researchers. These plasmids are a resource that allows the research community to dissect the biological function of proteins whose structures have been identified by the PSI. The plasmid annotation, which includes the full length sequence, vector information and associated publications, is stored in a freely available, searchable database called DNASU (http://dnasu.asu.edu). Each PSI plasmid is also linked to a variety of additional resources, which facilitates cross-referencing of a particular plasmid to protein annotations and experimental data. Plasmid samples can be requested directly through the website. We have also developed a novel strategy to avoid the most common concern encountered when distributing plasmids namely, the complexity of material transfer agreement (MTA) processing and the resulting delays this causes. The Expedited Process MTA, in which we created a network of institutions that agree to the terms of transfer in advance of a material request, eliminates these delays. Our hope is that by creating a repository of expression-ready plasmids and expediting the process for receiving these plasmids, we will help accelerate the accessibility and pace of scientific discovery

    The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment

    Full text link
    Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal and/or myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin-remodeling complexes

    Olfactory Performance as an Indicator for Protective Treatment Effects in an Animal Model of Neurodegeneration

    Get PDF
    Background: Neurodegenerative diseases are often accompanied by olfactory deficits. Here we use a rare neurovisceral lipid storage disorder, Niemann–Pick disease C1 (NPC1), to illustrate disease-specific dynamics of olfactory dysfunction and its reaction upon therapy. Previous findings in a transgenic mouse model (NPC1-/-) showed severe morphological and electrophysiological alterations of the olfactory epithelium (OE) and the olfactory bulb (OB) that ameliorated under therapy with combined 2-hydroxypropyl-ß-cyclodextrin (HPßCD)/allopregnanolone/miglustat or HPßCD alone.Methods: A buried pellet test was conducted to assess olfactory performance. qPCR for olfactory key markers and several olfactory receptors was applied to determine if their expression was changed under treatment conditions. In order to investigate the cell dynamics of the OB, we determined proliferative and apoptotic activities using a bromodeoxyuridine (BrdU) protocol and caspase-3 (cas-3) activity. Further, we performed immunohistochemistry and western blotting for microglia (Iba1), astroglia (GFAP) and tyrosine hydroxylase (TH).Results: The buried pellet test revealed a significant olfactory deterioration in NPC1-/- mice, which reverted to normal levels after treatment. At the OE level, mRNA for olfactory markers showed no changes; the mRNA level of classical olfactory receptor (ORs) was unaltered, that of unique ORs was reduced. In the OB of untreated NPC1-/- mice, BrdU and cas-3 data showed increased proliferation and apoptotic activity, respectively. At the protein level, Iba1 and GFAP in the OB indicated increased microgliosis and astrogliosis, which was prevented by treatment.Conclusion: Due to the unique plasticity especially of peripheral olfactory components the results show a successful treatment in NPC1 condition with respect to normalization of olfaction. Unchanged mRNA levels for olfactory marker protein and distinct olfactory receptors indicate no effects in the OE in NPC1-/- mice. Olfactory deficits are thus likely due to central deficits at the level of the OB. Further studies are needed to examine if olfactory performance can also be changed at a later onset and interrupted treatment of the disease. Taken together, our results demonstrate that olfactory testing in patients with NPC1 may be successfully used as a biomarker during the monitoring of the treatment

    Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln(49 )TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes

    Get PDF
    BACKGROUND: Spinocerebellar ataxia type 17 (SCA17), a neurodegenerative disorder in man, is caused by an expanded polymorphic polyglutamine-encoding trinucleotide repeat in the gene for TATA-box binding protein (TBP), a main transcription factor. Observed pathogenic expansions ranged from 43 – 63 glutamine (Gln) codons (Gln(43–63)). Reduced penetrance is known for Gln(43–48 )alleles. In the vast majority of families with SCA17 an expanded CAG repeat interrupted by a CAA CAG CAA element is inherited stably. RESULTS: Here, we report the first pedigree with a Gln(49 )allele that is a) not interrupted, b) unstable upon transmission, and c) associated with reduced penetrance or very late age of onset. The 76-year-old father of two SCA17 patients carries the Gln(49 )TBP allele but presents without obvious neurological symptoms. His children with Gln(53 )and Gln(52 )developed ataxia at the age of 41 and 50. Haplotype analysis of this and a second family both with uninterrupted expanded and unstable pathological SCA17 alleles revealed a common core genotype not present in the interrupted expansion of an unrelated SCA17 patient. Review of the literature did not present instability in SCA17 families with expanded alleles interrupted by the CAA CAG CAA element. CONCLUSION: The presence of a Gln(49 )SCA17 allele in an asymptomatic 76-year-old male reams the discussion of reduced penetrance and genotypes producing very late disease onset. In SCA17, uninterrupted expanded alleles of TBP are associated with repeat instability and a common founder haplotype. This suggests for uninterrupted expanded alleles a mutation mechanism and some clinical genetic features distinct from those alleles interrupted by a CAA CAG CAA element

    A Full-Genomic Sequence-Verified Protein-Coding Gene Collection for Francisella tularensis

    Get PDF
    The rapid development of new technologies for the high throughput (HT) study of proteins has increased the demand for comprehensive plasmid clone resources that support protein expression. These clones must be full-length, sequence-verified and in a flexible format. The generation of these resources requires automated pipelines supported by software management systems. Although the availability of clone resources is growing, current collections are either not complete or not fully sequence-verified. We report an automated pipeline, supported by several software applications that enabled the construction of the first comprehensive sequence-verified plasmid clone resource for more than 96% of protein coding sequences of the genome of F. tularensis, a highly virulent human pathogen and the causative agent of tularemia. This clone resource was applied to a HT protein purification pipeline successfully producing recombinant proteins for 72% of the genes. These methods and resources represent significant technological steps towards exploiting the genomic information of F. tularensis in discovery applications
    corecore