89 research outputs found

    Subclavian artery rupture in a young man during excessive weight lifting

    Get PDF
    We report a 19-year-old man with rupture of the right subclavian artery after an excessive exercise of weight lifting. Imaging showed a hematothorax and hematomediastinum, a pseudoaneurysm with a maximum diameter of 4 cm, and a dissection of the right vertebral artery. As an emergency procedure an interposition graft was performed for reconstruction of the right subclavian artery. The patient's postoperative course was uneventful, and he was symptom free except for regressive hoarseness due to a paresis of the right recurrent laryngeal nerve

    The sensitivity of the Eocene-Oligocene Southern Ocean to the strength and position of wind stress

    Get PDF
    The early Cenozoic opening of the Tasmanian Gateway (TG) and Drake Passage (DP), alongside the synergistic action of the westerly winds, led to a Southern Ocean transition from large, subpolar gyres to the onset of the Antarctic Circumpolar Current (ACC). However, the impact of the changing latitudinal position and strength of the wind stress in altering the early Southern Ocean circulation has been poorly addressed. Here, we use an eddy-permitting ocean model (0.25∘) with realistic late Eocene paleo-bathymetry to investigate the sensitivity of the Southern Ocean to paleo-latitudinal migrations (relative to the gateways) and strengthening of the wind stress. We find that southward wind stress shifts of 5 or 10∘, with a shallow TG (300 m), lead to dominance of subtropical waters in the high latitudes and further warming of the Antarctic coast (increase by 2 ∘C). Southward migrations of wind stress with a deep TG (1500 m) cause the shrinking of the subpolar gyres and cooling of the surface waters in the Southern Ocean (decrease by 3–4 ∘C). With a 1500 m deep TG and maximum westerly winds aligning with both the TG and DP, we observe a proto-ACC with a transport of ∼47.9 Sv. This impedes the meridional transport of warm subtropical waters to the Antarctic coast, thus laying a foundation for thermal isolation of the Antarctic. Intriguingly, proto-ACC flow through the TG is much more sensitive to strengthened wind stress compared to the DP. We suggest that topographic form stress can balance surface wind stress at depth to support the proto-ACC while the sensitivity of the transport is likely associated with the momentum budget between wind stress and near-surface topographic form stress driven by the subtropical gyres. In summary, this study proposes that the cooling of Eocene Southern Ocean is a consequence of a combination of gateway deepening and the alignment of maximum wind stress with both gateways.publishedVersio

    Reconciling float-based and tracer-based estimates of lateral diffusivities

    Get PDF
    Lateral diffusivities are computed from synthetic particles and tracers advected by a velocity field derived from sea-surface height measurements from the South Pacific, in a region west of Drake Passage. Three different estimates are compared: (1) the tracer-based “effective diffusivity” of Nakamura (1996), (2) the growth of the second moment of a cloud of tracer and (3) the single- and two-particle Lagrangian diffusivities. The effective diffusivity measures the cross-stream component of eddy mixing, so this article focuses on the meridional diffusivities for the others, as the mean flow (the ACC) is zonally oriented in the region. After an initial transient of a few weeks, the effective diffusivity agrees well with the meridional diffusivity estimated both from the tracer cloud and from the particles. This proves that particle- and tracer-based estimates of eddy diffusivities are equivalent, despite recent claims to the contrary. Convergence among the three estimates requires that the Lagrangian diffusivities be estimated using their asymptotic values, not their maximum values. The former are generally much lower than the latter in the presence of a mean flow. Sampling the long-time asymptotic behavior of Lagrangian diffusivities requires very large numbers of floats in field campaigns. For example, it is shown that hundreds of floats would be necessary to estimate the vertical and horizontal variations in eddy diffusivity in a sector of the Pacific Southern Ocean

    Planetary-geometric constraints on isopycnal slope in the Southern Ocean

    Get PDF
    On planetary scales, surface wind stress and differential buoyancy forcing act together to produce isopycnal surfaces that are relatively flat in the tropics/subtropics and steep near the poles, where they tend to outcrop. Tilted isopycnals in a rapidly rotating fluid are subject to baroclinic instability. The turbulent, mesoscale eddies generated by this instability have a tendency to homogenize potential vorticity (PV) along density surfaces. In the Southern Ocean (SO), the tilt of isopycnals is largely maintained by competition between the steepening effect of surface forcing and the flattening effect of turbulent, spatially inhomogeneous eddy fluxes of PV. Here we use quasi-geostrophic theory to investigate the influence of a planetary-geometric constraint on the equilibrium slope of tilted density/buoyancy surfaces in the SO. If the meridional gradients of relative vorticity and PV are small relative to β, then quasi-geostrophic theory predicts ds/dz = β/ f0 = cot(ϕ0)/a, or equivalently r ≡ |∂zs/(β/ f0)| = 1, where s is the isopycnal slope, ϕ0 is a reference latitude, a is the planetary radius, and r is the depth-averaged criticality parameter. We find that the strict r = 1 condition holds over specific averaging volumes in a large-scale climatology. A weaker r = O(1) condition for depth-averaged quantities is generally satisfied away from large bathymetric features. We employ the r = O(1) constraint to derive a depth scale to characterize large-scale interior stratification, and we use an idealized sector model to test the sensitivity of this relationship to surface wind forcing. Finally, we discuss the possible implications for eddy flux parameterization and for the sensitivity of SO circulation/stratification to changes in forcing

    Southern Ocean biogenic blooms freezing-in Oligocene colder climates

    Get PDF
    AbstractCrossing a key atmospheric CO2 threshold triggered a fundamental global climate reorganisation ~34 million years ago (Ma) establishing permanent Antarctic ice sheets. Curiously, a more dramatic CO2 decline (~800–400 ppm by the Early Oligocene(~27 Ma)), postdates initial ice sheet expansion but the mechanisms driving this later, rapid drop in atmospheric carbon during the early Oligocene remains elusive and controversial. Here we use marine seismic reflection and borehole data to reveal an unprecedented accumulation of early Oligocene strata (up to 2.2 km thick over 1500 × 500 km) with a major biogenic component in the Australian Southern Ocean. High-resolution ocean simulations demonstrate that a tectonically-driven, one-off reorganisation of ocean currents, caused a unique period where current instability coincided with high nutrient input from the Antarctic continent. This unrepeated and short-lived environment favoured extreme bioproductivity and enhanced sediment burial. The size and rapid accumulation of this sediment package potentially holds ~1.067 × 1015 kg of the ‘missing carbon’ sequestered during the decline from an Eocene high CO2-world to a mid-Oligocene medium CO2-world, highlighting the exceptional role of the Southern Ocean in modulating long-term climate.</jats:p

    Deep Convection as the Key to the Transition From Eocene to Modern Antarctic Circumpolar Current

    Get PDF
    From the Eocene (∼50 million years ago) to today, Southern Ocean circulation has evolved from the existence of two ocean gyres to the dominance of the Antarctic Circumpolar Current (ACC). It has generally been thought that the opening of Southern Ocean gateways in the late Eocene, in addition to the alignment of westerly winds with these gateways or the presence of the Antarctic ice sheet, was a sufficient requirement for the transition to an ACC of similar strength to its modern equivalent. Nevertheless, models representing these changes produce a much weaker ACC. Here we show, using an eddying ocean model, that the missing ingredient in the transition to a modern ACC is deep convection around the Antarctic continent. This deep convection is caused by cold temperatures and high salinities due to sea-ice production around the Antarctic continent, leading to both the formation of Antarctic Bottom Water and a modern-strength ACC
    corecore