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ABSTRACT

Mesoscale eddies play a major role in the transport of tracers in the ocean. Focusing on a sector in the east

Pacific, the authors present estimates of eddy diffusivities derived from kinematic tracer simulations using

satellite-observed velocity fields. Meridional diffusivities are diagnosed, and how they are related to eddy

properties through the mixing length formulation of Ferrari and Nikurashin, which accounts for the sup-

pression of diffusivity due to eddy propagation relative to the mean flow, is shown. The uniqueness of this

study is that, through systematically varying the zonal-mean flow, a hypothetical ‘‘unsuppressed’’ diffusivity is

diagnosed. At a given latitude, the unsuppressed diffusivity occurs when the zonal-mean flow equals the eddy

phase speed. This provides an independent estimate of eddy phase propagation, which agrees well with

theoretical arguments. It is also shown that the unsuppressed diffusivity is predicted very well by classical

mixing length theory, that is, that it is proportional to the rms eddy velocity times the observed eddy size, with

a spatially constant mixing efficiency of 0.35. Then, the suppression factor is estimated and it is shown that it

too can be understood quantitatively in terms of easily observed mean flow properties. The authors then

extrapolate from these sector experiments to the global scale, making predictions for the global surface eddy

diffusivity. Together with a prognostic equation for eddy kinetic energy and a theory explaining observed eddy

sizes, these concepts could potentially be used in a closure for eddy diffusivities in coarse-resolution ocean

climate models.

1. Introduction

Fluctuations on scales of roughly 20–300 km, which

derive their energy primarily from the baroclinic in-

stability of the large-scale density field, pervade the

global ocean and contain a large fraction of the ocean’s

energy (Gill et al. 1974). These fluctuations, known as

mesoscale eddies, dominate the dispersion of particles

and the mixing of tracers on large space and time scales

(Lumpkin and Elipot 2010). Understanding the mixing

induced by mesoscale eddies is a problem of both fun-

damental theoretical interest and practical importance.

The practical importance arises in coarse-resolution

ocean climate models, which do not resolve mesoscales.

Such models simulate the transport of tracers using a

Reynolds-averaged formulation of the tracer conserva-

tion equation: ›C/›t1 u � $C52$ � (u0C0)1 sources and

sinks, where C is the average concentration of the tracer

in a grid box, u is the resolved velocity field, u0 is the eddy
velocity, and u0C0 is an unresolved, subgrid-scale ‘‘eddy’’

flux, which must be parameterized. By far the most

common approach is to use a closure of the form

u0C0 52K$C. To isolate the physical processes un-

derlying the eddy flux, the tensor K, which relates the

three-dimensional eddy fluxes to the local background

gradients, is usually expressed in terms of an advective

component and a diffusive component, and the diffusive

component is rotated into an isopycnal component (i.e.,

along density surfaces) and a diapycnal component (i.e.,

across density surfaces) (Redi 1982; Griffies et al. 1998).

The diapycnal part of K, related to breaking internal

waves and other small-scale processes, is an active topic

of research but is not the focus here. The isopycnal part of

K represents lateral mixing by mesoscale eddies.
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Ocean climate models originally specified the com-

ponents of K as constants, but ample research based on

both observations and eddy-resolving models has re-

vealed strong spatial variability in mesoscale eddy mix-

ing rates (Holloway 1986; Stammer 1998; Zhang et al.

2001; Zhurbas and Oh 2003, 2004; Ferreira et al. 2005;

Marshall et al. 2006; Rypina et al. 2012; Fox-Kemper

et al. 2013; Abernathey andMarshall 2013). Models that

have incorporated spatial variation in mixing parame-

ters have been able to reduce their biases, but there is

still much room for improvement (Visbeck et al. 1997;

Ferreira et al. 2005; Danabasoglu and Marshall 2007).

Arguably, the two greatest obstacles limiting progress

are 1) poor knowledge of the eddy diffusivities in the

real ocean and 2) lack of understanding of how these

diffusivities are related to the large-scale fields.

In this study, we demonstrate that eddy diffusivities

derived from satellite observations are consistent with

a simple formula, whose ingredients are the root-mean-

square (rms) eddy velocity urms, which is proportional

to the eddy kinetic energy (EKE), the eddy size, the

eddy propagation speed, and the large-scale mean flow

speed. Together with a prognostic equation for EKE

(Eden and Greatbatch 2008; Marshall and Adcroft

2010) and a theory for the eddy sizes, these results can

then be used to develop a complete eddy closure. This

study is focused on relating observable eddy properties

to diagnosed diffusivities; a related study (Bates et al.

2013, manuscript submitted to J. Phys. Oceanogr.) de-

scribes how to implement these insights in a complete

eddy parameterization.

The central tool in our study is the 20-year record of

sea surface height (SSH) observed by satellite altimetry.

These data provide both time-mean statistical proper-

ties of eddies and a continuous record of surface geo-

strophic velocity fields. Past authors have used statistical

information from the altimeter to estimate eddy diffu-

sivity but lacked a ‘‘ground truth’’ based on an empirical

observation of the eddy flux against which to compare

their predictions (e.g., Holloway 1986; Stammer 1998).

More recent studies have used the altimetric velocities

to directly simulate the transport of passive tracers,

leading to data-derived estimates of K (Marshall et al.

2006; Ferrari and Nikurashin 2010; Abernathey and

Marshall 2013). We follow this approach here. For

simplicity we first focus on a sector in the east Pacific

with symmetry in longitude but strong variations of eddy

and mean flow properties with latitude (see Fig. 1). We

calculate the meridional diffusivity Kobs as a function of

latitude for a wide range of zonal-mean flows. The data

and numerical experiments are detailed in section 2. We

then use these experiments to validate theoretical pre-

dictions for the diffusivity based on mixing length the-

ory. The theoretical framework is outlined in section 3.

FIG. 1. The study region in the east Pacific between 1808 and 1308W. (a) A snapshot of the SSH anomaly field.

(b) The zonal-mean flowU (black line), the eddy velocity urms (red line), and the observed eddy phase speed cobs from

an eddy-tracking algorithm (blue line).
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Section 4 contains a discussion of the difference between

nonlinear eddies and linear Rossby waves, concluding

that our framework is not applicable to the wavelike

equatorial region. In section 5, we infer the phase speeds

of eddies from our simulations, and in section 6 we ex-

amine the length scales associated with unsuppressed

diffusivities. Section 7 calculates the suppression factor

for a realistic zonal-mean flow. Finally, in section 8 we

extrapolate our results to the global ocean and discuss

predicted eddy diffusivities. A concluding discussion is

undertaken in section 9.

2. Satellite data and diffusivity calculations

Obtaining direct estimates of mesoscale eddy diffu-

sivity from observations is challenging. The most

straightforward method is to construct a local diffusivity

based onmooringmeasurements of the eddy flux of heat

(Bryden andHeath 1985). This approach is compromised

by the shortness of the available time series (Wunsch

1999) and by the presence of ‘‘rotational fluxes,’’ non-

divergent components of the eddy flux vector field that

can dominate local measurements (Marshall and Shutts

1981). Lagrangian observations, from surface drifters and

subsurface floats, can also be used to estimate diffusivity

[review by LaCasce (2008) andRypina et al. (2012)]. This

approach has been more successful but is still limited in

accuracy and spatial resolution by the number and loca-

tion of drifter trajectories (Klocker et al. 2012a,b). In

recent years, an efficient, accurate method has been de-

veloped that uses real surface velocities (as observed by

satellite) in combination with simulated passive tracers to

infer eddy diffusivities (Marshall et al. 2006; Abernathey

et al. 2010; Ferrari and Nikurashin 2010; Klocker et al.

2012b; Abernathey andMarshall 2013). The tracer-based

approach offers global coverage for the entire satellite

era, which began in 1992.

Satellite observations of sea surface height anomaly

provide weekly geostrophic velocities at the sea surface

and resolve the largest mesoscale eddies (Chelton et al.

2007). Eddy properties vary widely across the globe. To

simplify our problem somewhat, we focus on a sector in

the east Pacific between 1808 and 1308W that is mostly

free of land and in which eddy properties are relatively

homogeneous with longitude. This allows us to focus on

the variation of eddy properties and mixing rates as

a function of latitude only. A snapshot of the sea surface

height anomaly in this sector is shown in Fig. 1, revealing

themeridional variations in eddy propagation speed and

intensity. This sector was also analyzed by Abernathey

and Marshall (2013), and our study builds on that work.

To calculate meridional eddy diffusivities, we simulate

the advection of a passive tracer using satellite-derived

velocity fields. The velocity dataset we employ is the

surface geostrophic velocity anomaly from Archiving,

Validation, and Interpretation of Satellite Oceano-

graphic data (AVISO). We use 17 years worth of obser-

vations, beginning with 6 January 1993. In addition to the

standard geostrophic balance, this dataset employs the

empirically validated ‘‘equatorial–geostrophic’’ approxi-

mation of Lagerloef et al. (1999) to calculate velocities

near the equator (between 58N and 58S). The AVISO

velocity anomalies are interpolated to a 1/108 grid, and
a small correction is applied to remove divergence and to

enforce periodicity in longitude. For further details of the

data and processing, the reader is referred toAbernathey

and Marshall (2013). In addition to the AVISO velocity

anomalies, different zonal-mean flows are superimposed,

as described in the following section.

Given a velocity field, we then solve the advection–

diffusion equation for a passive tracer C using the Mas-

sachusetts Institute of Technology General Circulation

Model (MITgcm) in offline mode (Marshall et al. 1997).

The initial condition for the passive tracer is simplyC5f;

that is, the tracer is proportional to latitude. Snapshots of

the tracer field after 3 months of advection are shown in

Fig. 2. The tracer is reset to the initial condition each year.

The eddy stirring produces ameridional flux of tracer y0C0;
the overbar indicates an average taken zonally (eliminat-

ing rotational fluxes), in time over each year, and over an

ensemble of 17 years. These calculations provide our em-

pirical estimate of diffusivity in the meridional direction:

Kobs 52
y 0C0

(›C/›y)
. (1)

Extensive validation of this method has been performed in

previous studies, confirming the insensitivity ofKobs to the

averaging period (provided it exceeds a few months)

and the numerical parameters (Marshall et al. 2006;

Abernathey andMarshall 2013). It was also confirmed that

that Kobs agrees very well with estimates based on La-

grangian trajectories (Klocker et al. 2012a,b) and with the

‘‘effective diffusivity’’ of Nakamura (1996). In what fol-

lows, we describe a series of experiments designed to in-

vestigate how Kobs is related to the properties of the flow.

But first we review the necessary theoretical background.

3. Mixing length suppression

Mixing length theory

Weseek to relateEulerian eddy statistics to theEulerian

flux gradient diffusivity in Eq. (1). (The relationship with

the Lagrangian framework is discussed in appendix A.)

A common approach in this context is to express the

eddy diffusivity in terms of mixing length arguments

(Taylor 1915; Prandtl 1925), which state that diffusivity

1032 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44



is proportional to the rms eddy velocity, where

urms 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EKE

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 1 y02

p
, times a mixing length Lmix:

Kmix 5GurmsLmix . (2)

Here, G is a mixing efficiency usually assumed to be an

order-one constant. The mixing length is conceptually

analogous to the concept of the mean free path in

thermodynamics: a fluid parcel will conserve its proper-

ties for a characteristic lengthLmix beforemixing with the

surrounding fluid. From the mixing length perspective,

a self-contained closure theory for eddy diffusivity

should predict urms and Lmix based on the properties of

the large-scale flow. This approach underlies many

proposed theoretical closures for geostrophic turbu-

lence and baroclinic equilibration, in both the ocean and

atmosphere (Bretherton 1966; Green 1970; Stone 1972;

Held and Larichev 1996; Eden and Greatbatch 2008;

Marshall and Adcroft 2010; among many). It has also

been used to estimate eddy diffusivities from observa-

tions (Holloway 1986; Stammer 1998). The observa-

tional problem is somewhat easier because urms is

readily observed by satellite or drifters; most of the

theoretical difficulty therefore lies in specifyingLmix and

G. In the works cited above, Lmix is often assumed to be

the length scale of the largest eddies. However, recent

developments (and this study) argue that this is not

necessarily the case; the mixing length can in fact be

much smaller than the eddy scale, for reasons discussed

in the next paragraph. Note that the mixing length ex-

pression in Eq. (2) is different from mixing length

methods based on tracer variance, which have been used

in some observational studies (Armi and Stommel 1983;

Naveira Garabato et al. 2011) and that are briefly de-

scribed in appendix B.

Recent work based on both observations and theo-

retical arguments has shown that the presence of eddy

propagation relative to a background mean flow sup-

presses eddy diffusivities in the across-current direction

(Marshall et al. 2006; Ferrari and Nikurashin 2010;

Klocker et al. 2012a,b; Abernathey and Marshall 2013;

Tulloch et al. 2013, manuscript submitted to J. Phys.

Oceanogr.). This phenomenon can be understood heu-

ristically as follows: if there is no mean flow, and if the

eddies are stationary, the eddy stirring acts coherently

on the same water masses for a long time, efficiently

mixing their properties. But if an individual eddy moves

relative to the underlying water, then it no longer acts on

the same water masses, and consequently mixing is less

efficient. Because urms is independent of mean flow or

eddy propagation, this suppression effect must be in-

terpreted as the result of a reduced mixing length.

An analytical model of this phenomenon was de-

veloped by Ferrari and Nikurashin (2010), who showed

that, for a weakly nonlinear isotropic eddy field, the

mixing length can be written as

Lmix 5
L

11
k2

g2
(cw 2U)2

, (3)

where g21 is the eddy decorrelation time, k is the eddy

wavenumber, cw is the absolute eddy phase speed,1 U is

FIG. 2. Snapshots of passive tracer concentrationC after 3 months

of advection by AVISO velocities, in three different regions. Note

the different color scales of the tracer in each region.

1 By absolute eddy phase speed cw, wemean the phase speed that

would bemeasured by a stationary observer. For baroclinic Rossby

waves, this phase speed is determined by a dispersion relation that

includes a Doppler shift by the depth-averaged zonal-mean flow

U
zt
, which is not necessarily the same as U at the surface.
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the background zonal velocity (depth dependent in gen-

eral, but here always the value at the surface). The termL

is the mixing length for isotropic turbulence, which we

assume to be the dominant Eulerian length scale of the

eddies, such thatL5 2p/k. [It will be shown subsequently

that this assumptionworks well. The relationship with the

Lagrangian formulation of Ferrari and Nikurashin (2010)

is discussed in appendix A.] If cw 5 U, no suppression

occurs, and Eq. (3) reduces to Lmix 5 L; that is, the

mixing length depends directly on the eddy size, and the

diffusivity is maximized. We call the corresponding

‘‘unsuppressed’’ diffusivity

K0
mix 5GurmsL . (4)

But if cw 6¼ U, then Lmix , L, leading to a smaller K.

Note that Eq. (3) relies on several assumptions. The two

major assumptions are that (i) there is a scale separation

between the eddies and mean flow, and (ii) the flow is

a parallel shear flow. These assumptions likely fail in

certain parts of the ocean where strong currents curve

significantly, for example, in the western boundary

currents or downstream of major topographic features

in the Antarctic Circumpolar Current (ACC) (Naveira

Garabato et al. 2011). The latter case will be discussed in

detail in section 7. Meanwhile, we will focus on the Pa-

cific sector, where no such issues arise, and, as we shall

demonstrate, Eq. (3) is quite accurate. The symbols used

in the paper are summarized in Table 1.

This new understanding of mixing length suppression

represents a significant advancement in the theory of

mesoscale mixing, but so far the issue has been exam-

ined only in the Southern Ocean. Furthermore, Eqs. (2)

and (3) are only useful for coarse-resolution climate

models if the parameters urms, L, cw, and g can be

specified easily based on large-scale fields. Moreover,

many simplifying assumptions underlie the theories ex-

plained above, and their validity must be tested experi-

mentally. In this study, we test these ideas and their

potential limitations in our Pacific sector (Fig. 1) by

systematically varying an imposed zonal-mean flow and

examining the resulting dependence of Kobs at each

latitude. This is a purely kinematic exercise, because the

flow fields are not dynamically consistent in general

(Haynes et al. 2007).

We run a series of simulations where the tracer C is

advected by the velocity field u 5 u0 1 U0i, where u0 is
the time-dependent, AVISO-derived eddy velocity; U0

is a constant zonal-mean velocity independent of lati-

tude; and i is the zonal unit vector. The set of 60 simu-

lations employs values of U0 between 20.2 and

0.5m s21. Meridional diffusivity Kobs [Eq. (1)] is calcu-

lated for each U0 experiment as a function of latitude.

The resulting diffusivities are shown as gray shading in

Fig. 3a, with examples for particular latitudes plotted in

Fig. 3b. First, this shows unequivocally that the diffu-

sivity is highly dependent on the mean flow. Further, as

expected from Eqs. (2) and (3), for some value of mean

flow (different at each latitude), Kobs reaches a maxi-

mum. We identify this maximum diffusivity with the

unsuppressed eddy diffusivity K0
obs. The diffusivities

drop off for smaller and larger values of U0. The skill of

Eq. (3) is evident in the shape of the Kobs(U0) curves,

which match very closely with the Lorentzian functional

form predicted by the equation. (The skill breaks down

closer to the equator, for reasons discussed below.)

TABLE 1. Summary of the variables used in the manuscript.

Variable Description

C Passive tracer concentration

u0, y0 Surface geostrophic eddy zonal and

meridional velocities

urms rms eddy speed

G Mixing efficiency parameter

K0
obs Unsuppressed meridional eddy diffusivity

obtained through direct tracer simulation

K0
mix Unsuppressed meridional eddy diffusivity

obtained through a mixing length argument

K0
tracer Unsuppressed meridional eddy diffusivity

obtained through a tracer-based mixing length

argument

Kobs Meridional eddy diffusivity obtained through

direct tracer simulation

Kmix Meridional eddy diffusivity obtained through

a mixing length argument

Ktracer Meridional eddy diffusivity obtained through

a tracer-based mixing length argument

Kmin Min of meridional and zonal eddy diffusivities

Lmix Mixing length

L Mixing length in isotropic turbulence

(no suppression effects)

Lobs Eddy diameter measured by identifying eddies

in SSH observations

LD First baroclinic deformation radius

LRh Rhines length scale

cw Absolute phase speed (i.e., measured by

a stationary observer)

cobs Absolute phase speed measured by tracking eddies

in SSH observations

c ‘‘Intrinsic’’ phase speed (does not include Doppler

shift)

b Meridional gradient of Coriolis parameter

U Any time- and zonal-mean surface zonal velocity

U0 A meridionally uniform value of U

Uobs Observed U from an ocean state estimate

U
zt

Time-, zonal-, and depth-mean zonal velocity

r Nonlinearity parameter

g Any eddy decorrelation inverse time scale

gL Eddy turnover inverse time scale

gfit Inverse time scale inferred by fitting the mixing

length formula to the simulations
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Furthermore, this method not only identifies K0, the

unsuppressed diffusivity, but also effectively provides

an independent estimate of cw, the eddy propagation

speed, as the value of U that maximizes the diffusivity

at each latitude.

4. Linear Rossby waves versus nonlinear mesoscale
eddies

Before interpreting our results, it is helpful to dis-

tinguish Rossby waves from nonlinear mesoscale

eddies. Linear Rossby waves are zonally propagating

oscillations that arise due to the presence of a planetary

vorticity gradient. Mesoscale eddies are strongly non-

linear turbulent fluctuations that derive their energy

primarily from baroclinic instability. In relation to

tracer transport, the most important difference be-

tween Rossby waves and nonlinear mesoscale eddies is

that eddies can cause irreversible mixing of tracers,

whereas linear Rossby waves cannot; distinguishing

regions dominated by linear Rossby waves from those

of nonlinear mesoscale eddies (or geostrophic turbu-

lence) is therefore important for the interpretation of

the results presented in this paper. The analytical

model for the eddy diffusivity discussed above [e.g.,

Eqs. (2) and (3)] applies only to nonlinear eddies. In

principle waves and nonlinear eddies of different scales

can coexist, given the broad spectrum of variability in

the ocean (Wunsch 2010). However, it is evident that at

low latitudes, eddy activity is suppressed and energy is

transferred instead into waves, while at mid- and high

latitudes, eddies are much more prevalent.

Several different approaches have recently been

employed to distinguish regions dominated by linear

Rossby waves from more nonlinear regions. One such

approach is to use the nonlinearity parameter urms/c

(Chelton et al. 2007, 2011; Early et al. 2011). (Here c, the

intrinsic phase speed, differs from cw, the absolute phase

speed; c does not include the Doppler shift by the depth-

averaged mean flow.) If urms/c . 1, that is, if the rota-

tional eddy velocity urms exceeds its translational speed

c, transforming the coordinates into a co-moving frame

will lead to closed streamlines within the eddy. This

leads to an eddy with an inner core, which traps fluid and

advects it along its path and an outer ring, which con-

tinuously entrains and sheds fluid (Early et al. 2011).

This outer ring mixes fluid over the eddy size L with the

rotational velocity urms, leading to the mixing length

arguments in Eq. (2). If urms/c , 1, contours are not

closed and the anomalies are more wavelike. Theiss

(2004) instead framed his analysis in terms of the Rhines

scaleLRh and the deformation radiusLD; he argued that

when LRh/LD . 1, waves are not able to transfer energy

into alternating zonal flows, permitting isotropic eddies

to exist. This argument implies a critical latitude at

LRh/LD 5 1. A similar transition fromwaves to turbulence

FIG. 3. The dependence of eddy diffusivities Kobs on the mean flow. (a) Eddy diffusivities for the east Pacific

sector are shown for mean flows ranging from 20.2 to 0.1m s21 as gray shading. Overlaid are eddy phase speeds

from linear Rossby wave theory including the Doppler shift by the mean flow (red line) and the eddy phase speed

estimated in this study (blue line). (b) Examples of the change ofKobs with different mean flows for lat 58, 108, 208,
308, 408, and 508N are presented for diffusivity estimates (solid lines) and the fit of the mixing length formula

(dashed lines).
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was demonstrated by Tulloch et al. (2009), who de-

termined the wavelength required to optimally fit the

phase speed predicted by linear theory to that observed

by altimetry. They concluded that at low latitude there is

an overlap between geostrophic turbulence and Rossby

wave time scales due to an upscale energy transfer that

produces waves, whereas at high latitudes there is no

such overlap; that is, waves were not produced and

eddies can exist.

Inspired by the studies cited above, we attempt to

characterize wavelike versus turbulent regions using the

ratio

r5
urms

jcj 5

�
LRh

LD

�2

, (5)

that is, the ratio between the rotational eddy velocity

urms and the eddy phase speed (or translational velocity)

c. The Rhines scale is defined as LRh 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
urms/b

p
, while c

is related to LD through the long-wave Rossby-wave

dispersion relation c52bL2
D. The second equality

demonstrates the equivalence between the approach of

Chelton et al. (2011) and that of Theiss (2004). For re-

gions where r, 1, we therefore expect an upscale energy

transfer to produce waves, whereas for regions with

r. 1, the gap in time scales between Rossby waves and

turbulence supports the existence of nonlinear meso-

scale eddies. The critical latitude is at r 5 1.

The ratio r for the Pacific patch used in this study is

shown in Fig. 4a, demonstrating a transition from waves

(r , 1) to eddies (r . 1) equatorward of the critical

latitude at approximately 188. Figure 4b shows the

number of eddies found per square degree latitude by an

eddy-tracking algorithm (Chelton et al. 2011), where an

eddy is defined by a closed sea surface height contour.

Equatorward of the critical latitude there are almost no

eddies observed; presumably instabilities at these low

latitudes transfer their energy into alternating zonal

flows or waves, rather than producing closed eddies.

Figure 4c shows the deformation scale LD and the

Rhines scaleLRh, which are equal at the critical latitude.

One consequence of this transition from waves to tur-

bulence is that we expect different mixing behavior in

the two regions. In particular, we do not expect the

model of Ferrari and Nikurashin (2010) [Eq. (3)] to be

valid in the more linear equatorial region.

5. Eddy phase speeds

Past studies have analyzed the propagation of sea

surface height anomalies in the altimetric record

(Chelton and Schlax 1996; Chelton et al. 2007, 2011). In

FIG. 4. Linear Rossby waves vs nonlinear mesoscale eddies and their effect on eddy length scales. (a) The ratio r is shown, with regions

r, 1 being dominated by linear Rossby waves, whereas regions with r. 1 are dominated by nonlinear mesoscale eddies. The dashed lines

in all panels represent the critical lat at r 5 1. (b) Observed eddy numbers per square degree. (c) The empirically calculated eddy size

(L; red line), the Rossby radius of deformation (LD; black line), the Rhines scale (LRh; blue line), and the radius of the observed eddy size

(Lobs; green line).
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recent years, there has been an effort to reconcile such

observational estimates with theoretical predictions,

and a debate has arisen over what dynamics are observed

in altimetric SSH anomaly signals—linear Rossby waves

or nonlinear mesoscale eddies (Chelton and Schlax 1996;

Killworth et al. 1997, 2004; Chelton et al. 2007; Tulloch

et al. 2009; Chelton et al. 2011; O’Brien et al. 2013)? Our

experiments can shed light on this debate by providing an

independent measurement of the phase speed through an

inversion of Eqs. (2) and (3). In the experiments with

a range of constant U0 (Fig. 3), we found a maximum dif-

fusivity K0
obs at each latitude. Equation (3) says that the

value ofU0 thatmaximizesKobs is equal to cw, theDoppler-

shifted eddy phase speed; this maximum value is indicated

by the blue line in Fig. 3a. Furthermore, because linear

waves do not cause mixing, we know that the value of cw
estimated in this way is associated with nonlinear eddies.

Nonlinear mesoscale eddies are expected to propa-

gate at the speed predicted by the linear baroclinic

Rossby wave theory (McWilliams and Flierl 1979;

Killworth 1986; Cushman-Roisin et al. 1990). In the long

Rossby wave limit (jkj / 0), and taking into account

Doppler shifting by the depth-averaged mean flow U
zt

(Klocker and Marshall 2013, manuscript submitted to

Geophys. Res. Lett.), this speed can be written as

cw5U
zt
2bL2

D . (6)

To evaluate this equation for the Pacific region, we

borrowed an estimate of LD from Tulloch et al. (2009),

who calculated it from the mean stratification of an

ocean state estimate (Forget 2010). (The term LD itself

is plotted in Fig. 4c.) The depth-averaged mean flow

component U
zt
is calculated using the depth-averaged

mean flow of the same hydrography. In Fig. 3a, the phase

speed estimated using the inversion of eddy diffusivity

estimates (blue line) is compared to the phase speed

fromEq. (6) (red line). These two values agree very well

poleward of the critical latitude. This good agreement

therefore confirms that nonlinear mesoscale eddies,

which we expect to dominate the ocean poleward of the

critical latitude, do travel at the linear Rossby wave

speedDoppler shifted by the depth-averagedmean flow.

This is encouraging from the perspective of parameter-

izing Kobs, because cw is straightforward to calculate

given the large-scale density field. In section 7, we will

use Eq. (6) in Eq. (3) to quantitatively estimate the

mixing length suppression effect.

6. Eddy length scales

We now turn to understanding the eddy length scales

relevant for mixing. To achieve this without the distorting

effect of eddy propagation, we use estimates of the

unsuppressed eddy diffusivities K0
obs, for which Eqs. (2)

and (3) reduce to Lmix5L5K0
obs/(Gurms). Figure 4

shows the empirically calculated unsuppressed mixing

length L, the observed eddy size Lobs, and the Rossby

radius of deformation LD. For these calculations we use

a constant mixing efficiency parameter of G 5 0.35. This

gives the best fit between L and Lobs and also has

a physical rationale explained below. The observed eddy

size Lobs is estimated using an eddy-tracking algorithm

and defined as the radius of a circle with an area equal to

that enclosed by the contour of SSH within the eddy

around which the circum-average speed is maximum

(Chelton et al. 2011). For regions of nonlinear mesoscale

eddies (r . 1), the observed eddy size is slightly larger

than the Rossby radius of deformation. This is consistent

with a weak, upscale transfer of kinetic energy from a

sourcewith scales near the Rossby radius of deformation;

such an inverse energy cascade is expected from geo-

strophic turbulence theory (Rhines 1975; Scott andWang

2005).

The agreement between the observed eddy size Lobs

and the empirically calculated eddy size L (using G 5
0.35) can be seen even more clearly in Fig. 5. This figure

shows how eddy length scales depend on the ratio r.

Figure 5a plots the ratio l/LD versus r, where l is either

Lobs (blue dots) orL (red dots). Figure 5b plotsLobs and

L directly against r. Both Figs. 5a and 5b unequivocally

show thatL agrees very well withLobs in regions of r. 1,

with more complicated behavior in regions of r , 1. In

the past, the relationship between L and observed eddy

size was more obscure, because previous studies tried to

relate suppressed mixing lengths Lmix to the eddy length

scales (e.g., Lumpkin et al. 2002; Eden and Greatbatch

2008; Marshall and Adcroft 2010). Only if the suppres-

sion effects can be removed, does the mixing length re-

duce to the length scale of the largest eddies, as has been

assumed many times before (Bretherton 1966; Green

1970; Stone 1972; Held and Larichev 1996). This agree-

ment between the observed eddy size and mixing length

means we can accurately estimate the unsuppressed eddy

diffusivities using K0
mix ’ GurmsLobs. This approximation

is shown in Fig. 6 (red dashed line) and agrees extremely

well with the value of K0
obs derived directly from the

tracer fluxes.

We have employed a mixing efficiency of G 5 0.35, but

what sets this value? One attempt at explaining this

parameter was the work of Taylor (1915), which is also

the first publication to use a mixing length approach (to

explain vertical eddy transport of heat in the atmo-

sphere) known to the authors. Taylor (1915) wrote the

vertical eddy diffusivity as Ky 5 0:5wd, where w was

the typical vertical velocity within an eddy, and dwas the
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average height through which an eddy moves in the

vertical before mixing with its surroundings. He ex-

plains the factor of 0.5 by saying ‘‘the air at any given

point is equally likely to be in any portion of the path

of the eddy so that the average value of z 2 z0 [the

Lagrangian displacement] should be approximately

equal to d/2.’’ Our L is analogous to Taylor’s d. If we

assume that our urms represents the rotational velocity

of a circular eddy, this would be related to w by a factor

of p/2. Correcting our mixing efficiency by this factor,

we obtain (p/2)G5 (p/2)0:35 ’ 0:55, which is very close

to Taylor’s factor of 1/2, especially if one considers the

uncertainties in defining the observed eddy size Lobs.

This provides some physical rationale for the use of

G5 0.35, beyond the simple fact that it produces the best

agreement with K0.

7. The suppression factor

So far we have focused on K0, the unsuppressed

diffusivity, using it to understand the relationship be-

tween the eddy kinetic energy, size, and mixing in the

absence of any suppression effects. But K0 is a hypo-

thetical construction, not the diffusivity experienced in

the real ocean. We will now build on these results to

understand eddy diffusivities in the presence of a re-

alistic mean flow. To do so, we empirically calculate the

meridional diffusivity using the passive tracer with

velocity field u 5 u0 1 U(y), where U(y) is the zonally

averaged surface zonal flow [here taken from the ocean

state estimate of Forget (2010)]. This diffusivity, which

we call Kobs, is shown as a black solid line in Fig. 6; it is

clearly less thanK0
obs in most of the ocean. Now, we test

to what extent this reduction in diffusivity can be ex-

plained quantitatively by the mixing suppressionmodel

discussed in section 2.

As can be seen from Eqs. (2) and (3), and using a con-

stant mixing efficiency G, the suppressed eddy diffusivity

can be written as

Kmix 5
GurmsLobs

11
k2

g2
(cw 2U)2

5
K0

11
k2

g2
(cw 2U)2

. (7)

The variables that determine the mean flow suppression

are the mean flow speed relative to the eddy phase speed

(cw 2 U), the eddy wavenumber k, and the eddy de-

correlation time scale g21. The wavenumber is simply

k 5 2p/Lobs.
The crucial parameter in determining the strength of

the suppression effect is the inverse time scale g. In the

stochastic models of Ferrari and Nikurashin (2010) and

Klocker et al. (2012b), g arises as the linear damping of

potential vorticity anomalies, meant to represent the

FIG. 5. (a) The ratio between eddy length scales and the deformation radius l/LD relative to the ratio r is plotted, with blue dots

showing the length scale l5Lobs and red dots showing the length scale l5L. (b) The length scaleLobs (blue dots) and the length scaleL

(red dots) relative to the ratio r. Note the difference in behavior for the ratio r, 1 (linear waves) and r. 1 (nonlinear eddies), where for

r . 1:L 5 Lobs.
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damping aspect of nonlinear wave–wave interactions. In

these models, it is equivalent to the eddy velocity de-

correlation time scale, meaning that we can estimate it

using the Lagrangian formula

gL5
EKE

K0
5

urms

2GLobs

, (8)

where K0 is the unsuppressed diffusivity discussed

previously. (The subscript L indicates that this is the

Lagrangian time scale.) Together with the values of

Lobs and cw, which were also discussed in preceding

sections, this allows us to test the agreement of Eq. (7)

against Kobs. The comparison is shown in Fig. 6, where

the red solid line showsKmix as estimated using Eq. (7).

From Fig. 6, it is clear that Eq. (7) captures the sup-

pression effect qualitatively. The strong meridional

variation in Kobs is captured particularly well, with the

peaks and valleys located at the right latitudes. How-

ever, it is also clear that significant quantitative dis-

agreement in magnitude exists in certain regions. In

general, Eq. (7) underestimates Kobs at most latitudes

using gL. There are two possibilities to explain this re-

maining misfit within the context of Eq. (7): either the

mixing efficiency G now changes its value with latitude

or else our choice of gLwas incorrect. It is not possible to

distinguish these possibilities through our experiments.

Because we have no physical model with which to ex-

plain a nonconstant G, we prefer to treat it as constant

and instead focus on g.

Rather than using gL in Eq. (7), we can find the value

that gives the minimummisfit betweenKobs and Eq. (7),

keeping the other parameters fixed. This leads to an

alternate estimate of g, which we call gfit. In Fig. 7, we

plot these two estimates of g side by side. (Note that the

figure plots g21, in order to give units of time.) While gL
varies between (4 days)21 and (8 days)21, gfit is much

more constant at approximately (4 days)21. From this

point of view, the fact that gL is in general smaller than

gfit is responsible for the overestimated suppression ef-

fect in Fig. 6.

The mismatch between gL and gfit suggests a potential

shortcoming in the stochastic models of Ferrari and

Nikurashin (2010) and Klocker et al. (2012b); these

models predict the two quantities should be the same. It

is noteworthy that the region of best agreement is the

ACC region, where the aforementioned studies were

focused. This is one possible reason why the issue was

not noticed in those earlier studies. It is well known that

the nature of the relationship between Eulerian and

Lagrangian scales varies considerably throughout the

global ocean (Lumpkin et al. 2002). By examining a wide

range of latitudes, our results suggest that some aspects

of the model could be refined. Keeping in mind that g

was introduced through a linearization of turbulent

nonlinear wave–wave interactions it seems unsurprising

that this parameter is a source of uncertainty.

Despite the overestimation of the mixing suppression,

we emphasize that, given the wide range of latitudes and

Kobs values over this sector, it is evident that Eq. (7) is

skillful at reproducing the observed diffusivities and can

therefore provide a robust basis for eddy parameteriza-

tions. Even employing gL in Eq. (7), the agreement with

Kobs is decent. Even better agreement could be achieved

FIG. 6. Unsuppressed and suppressed eddy diffusivities in the

east Pacific sector. Unsuppressed eddy diffusivities from tracer

calculations K0
obs (black dashed line) are compared to estimates

calculated using mixing length formula in Eq. (3) K0 (red dashed

line). Solid lines represent suppressed eddy diffusivities using the

same methods as for the unsuppressed estimates.
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by simply using a constant g 5 (4 days)21, although this

option is somewhat less satisfying without a deeper ex-

planation for how its value arises.

8. Global extrapolation

Motivated by the skill of Eq. (7), we now attempt to

extrapolate to the full global ocean using observed eddy

kinetic energy and size. We begin with an isotropic un-

suppressed diffusivity K0, given by the product of urms

and Lobs globally. This is shown in Fig. 8a. We then

calculate different suppression factors based on the

mean velocities and long-wave linear Rossby wave

speed in each direction:

Ky5G
urmsLobs

11
k2

g2L
(cx2U)2

and Kx5G
urmsLobs

11
k2

g2L
(cy2V)2

,

(9)

where cx is now the zonal phase speed from Eq. (6), U is

the zonal-mean flow as before, cy is the meridional phase

speed that we set equal to the depth-averagedmeridional-

mean flow,2 and V is the mean meridional velocity. The

suppressed eddy diffusivity shown in Fig. 8b is then the

minimum between the zonal and meridional diffusiv-

ities, Kmin 5 min(Kx, Ky), because we are interested in

the cross-stream eddy diffusivity, that is, the direction

along which diffusivities are smallest. The resulting eddy

diffusivities, shown in Fig. 8b, reveal an extremely high

degree of spatial variability over more than an order of

magnitude. Low diffusivities are found in regions of

strongmean flow, such as theACCandwestern boundary

currents, with high diffusivities on their flanks. Both the

magnitude and spatial variability of eddy diffusivities are

consistent with recent studies based on observations

(Marshall et al. 2006; Rypina et al. 2012; NaveiraGarabato

et al. 2011; Abernathey and Marshall 2013).

One aspect of these global diffusivity estimates merits

closer consideration. Recent work on eddymixing in the

ACC has highlighted the importance of ‘‘hotspots’’ for

cross-frontal exchange in the lee of topography (Naveira

Garabato et al. 2011; Thompson and Sall�ee 2012).

Naveira Garabato et al. (2011) hypothesized that these

hotspots are due to the mixing length arguments in Eq.

(3) breaking down in these regions because these topo-

graphic features lead to a nonzonal shear flow, hence

violating the assumptions behind the mixing length

model in Eq. (3). To understand these hotspots in the

ACC inmore detail we showKmin, EKE, and the inverse

of the suppression factor sup5 11 (k2/g2
L)(cw 2U)2 in

Fig. 9. As shown before (e.g., Naveira Garabato et al.

2011; Thompson and Sall�ee 2012), the ACC displays

strong zonal inhomogeneities, with regions of particularly

strong EKE found downstream of major topographic

features such as the Kerguelen Plateau, Campbell Pla-

teau, and Drake Passage. Together with the distribution

of the mean flow, the mixing length arguments predict

strong suppression of eddy mixing over topography with

FIG. 7. Two different estimates of g. The term gL is the La-

grangian time scale defined in Eq. (8). The term gfit is the value that

produces the best agreement between Kobs and Eq. (7).

2Whereas the depth-averaged zonal-mean flow very accurately

explains theDoppler shift of mesoscale eddies, this is not the case for

the meridional phase speed of eddies; see Klocker and Marshall

(2013, manuscript submitted to Geophys. Res. Lett.) for details.

Nevertheless, describing the meridional phase speed with the depth-

averaged meridional-mean flow has negligible consequences for the

estimates of eddy mixing.
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very weak suppression in the lee of these features,

leading to eddy diffusivities that are enhanced by more

than an order of magnitude in these mixing hotspots.

Hence, even though we cannot prove here that the as-

sumptions behind themixing length model in Eq. (3) are

not violated in these regions, we can show that the

mixing length approach is capable of predicting very

high eddy diffusivities in the lee of topography, which

are in the same locations and of the same magnitude as

described elsewhere (Sall�ee et al. 2011; Thompson and

Sall�ee 2012; Abernathey and Marshall 2013).

9. Conclusions

Our goal in this study has been to attempt to explain

observed patterns of global surface eddy diffusivity

using the mixing length approach. In this case, our

‘‘observed’’ diffusivities were generated from kinematic

tracer advection experiments using observed surface

geostrophic velocities. Provided one properly accounts

for the suppression effect of wave propagation relative

to themean flow, we have demonstrated that knowledge

of eddy size, EKE, depth-averaged mean flow, and the

Rossby deformation radius (needed to calculate the long-

wave Rossby wave phase speed) permits the accurate

estimation of spatially varying eddy diffusivities using

a simple formula. The resulting eddy diffusivities vary by

more than an order of magnitude. This exercise can been

seen as an updated version of the studies by Holloway

(1986) and Stammer (1998), who also attempted to make

estimates of eddy diffusivity from satellite observations.

These earlier studies lacked two key elements that we

have included here: an updated mixing length theory

accounting for the suppression effect and a kinematic

tracer simulation to provide a ground truth against which

to test the theory’s skill.

In the course of making our estimate and validating the

mixing length formulas, we gained two additional insights

along the way: 1) nonlinear eddies responsible for mixing

travel at the Doppler-shifted long-wave Rossby wave

phase speed, and 2) there is a direct relationship between

observed eddy size and mixing length, but only for the

FIG. 8. Global estimates of eddy diffusivities. Estimates of (a) the unsuppressed eddy

diffusivities K0 are compared to (b) the suppressed eddy diffusivities Kmin. Diffusivities are

shown on a log10 scale.

MARCH 2014 KLOCKER AND ABERNATHEY 1041



hypothetical unsuppressed diffusivity. As Eq. (3) makes

clear, eddy size is crucial for setting the actual mixing

length, but the suppression factor also plays an important

role globally (and not just in the Southern Ocean). An-

other conclusion we reached [confirming work by Theiss

(2004) and Tulloch et al. (2009)] is that there exists

a critical latitude of approximately 6188 that divides an
equatorial regime, dominatedbywavelike behavior, from

the rest of the ocean, where nonlinear eddies prevail. The

mixing length theory we employed applies well to mixing

in the nonlinear eddy regime, but not the low-latitude

regime. Future workwill have to develop a new approach

to understand what determines eddy diffusivity in this

low-latitude region.

It is important to understand what our study does not

do: it does notmake a complete closure for eddy diffusivity

in terms of the mean state, in the vein of Green (1970),

Stone (1972), or Held and Larichev (1996). To make such

a closure using our approach, one must go farther and

predict the EKE and eddy size based on the mean state.

Stammer (1998) illustrates of how this might be done

using linear baroclinic instability theory. One limitation

of linear theory is its inability to account for the inverse

cascade, which causes eddies to grow larger than the

deformation radius (Smith 2007). As Fig. 5a illustrates, the

strength of the inverse cascade depends on the nonlinearity

parameter r. Another limitation of linear stability anal-

ysis that treats each profile independently (as in Stammer

1998; Smith 2007; Smith and Marshall 2009; Vollmer and

Eden 2013) is that it cannot allow for nonlocal generation

and dissipation of EKE. Grooms et al. (2013) recently

showed that the eddy energy cycle can in fact be ex-

tremely nonlocal, complicating such closure attempts.

Two final ingredients necessary to turn these ideas

into a full-fledged closure scheme in a coarse-resolution

ocean model are 1) a theory for the vertical structure of

the diffusivity and 2) a treatment of the advective part of

eddy transport [related to the Gent and McWilliams

(1990) parameterization]. Ferrari andNikurashin (2010)

and Klocker et al. (2012a) showed that it is relatively

straightforward to extend the mixing length approach

in the vertical, provided that the vertical structure of

EKE is known. In the interior of the ocean, the mixing

length approach would provide an isopycnal diffusivity.

Complicating matters, Smith and Marshall (2009) and

Abernathey and Marshall (2013) have demonstrated

that isopycnal diffusivities have a nontrivial relationship

with the Gent–McWilliams coefficient, especially where

FIG. 9. (a) The suppressed eddy diffusivity log10(K
min) (m2 s21), (b) the EKE (m2 s22), and (c) the inverse of the suppression factor

sup5 11 (k2/g2
L)(cw 2U)2 are shown for the Southern Ocean. White lines show the main ACC fronts, that is, the Polar Front, the

Subantarctic Front, and the northern branch of the Subantarctic Front (Sall�ee et al. 2008).
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there is strong vertical structure in these coefficients.

A related study (Bates et al. 2013, manuscript submitted

to J. Phys. Oceanogr.) addresses this issue through by-

passing the Gent–McWilliams approach completely and

calculating the eddy-induced velocities in terms of po-

tential vorticity mixing (Marshall 1981).

It is our hope that the ideas presented in this paper can

contribute to parameterization efforts by providing

simple relations between diffusivity and eddy proper-

ties. Beyond this practical goal, we consider these results

an incremental step toward better understanding tracer

transport by turbulent flows, a problem of fundamental

theoretical importance in the ocean and atmosphere.

While our results, together with recent studies by Ferrari

and Nikurashin (2010) and Klocker et al. (2012a,b), sug-

gest significant progress for extratropical oceanic flows

with high zonal symmetry, much remains to be done. The

mixing length ideas presented herein clearly fail in the

equatorial regime, characterized by values of r , 1. Fur-

ther research is required to understand how to better

describe this regime. The issue is not simply of theoretical

interest; the meridional ocean eddy heat transport is quite

significant at low latitudes (Jayne and Marotzke 2002).

Furthermore, although we have gone to great lengths to

empirically validate the mixing length formulas in the

Pacific sector, we have not done such a detailed compari-

son for the full ocean surface flow. Instead, we have simply

extrapolated the results from the Pacific sector to a global

scale. Although the resulting map is generally consistent

with observational estimates (e.g., Rypina et al. 2012;

Abernathey and Marshall 2013), understanding the de-

tailed structure of the diffusivity tensor in regions of strong

anisotropy, such as western boundary currents, should be

a high priority for future research. Additionally, more re-

search needs to be done to understand the variations of

mixing efficiency, a topic that has seen little attention so

far. Finally, because we have focused on cross-stream

diffusivity, we have not attempted to include the effects of

shear dispersion in our estimates; this process is expected

to enhance diffusivity in the along-jet direction in the

presence of mean flow shear (Young and Jones 1991).
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APPENDIX A

Lagrangian Perspective

We framed our discussion of diffusivity and mixing

length in section 3 in terms of Eulerian arguments. Here,

we briefly review the Lagrangian interpretation. A La-

grangian approach to eddy diffusion was introduced by

Taylor (1921). Assuming a homogenous and isotropic

eddy field, he showed that one can write K as being

equal to the EKE times an integral time scale TL, with

the integral time scale being equal to the time integral of

the Lagrangian velocity autocorrelation RL:

KL 5EKETL 5EKE

ð‘
0
RL(t) dt . (A1)

This approach has subsequently been refined to allow

for spatially varying diffusivities and mean flow and to

be applicable to ocean float data (Davis 1987, 1991).

Numerous applications followed, with one recent ex-

ample being the Diapycnal and Isopycnal Mixing Ex-

periment in the Southern Ocean (DIMES) (Gille et al.

2012), which used floats to estimate eddy diffusivities in

theACC.Klocker et al. (2012a) demonstrated howwave

propagation relative to the mean flow can also reduce

the Lagrangian time scale, analogously to the suppres-

sion of mixing lengths. Specifically, for a weakly non-

linear eddy field, they showed that the integral time scale

can be written as

TL 5

ð‘
0
e2g

L
t cos[k(c2U)2t] dt , (A2)

where g21
L is the decorrelation time scale. [This ex-

pression rests on the same assumptions as the expression

for the mixing length in Eq. (3).] Therefore, TL is com-

posed of an exponential decay term and an oscillatory

term. The exponential decay term depends only on eddy

properties (giving the unsuppressed integral time scale)

and the oscillatory term is due to across-current sup-

pression by the mean flow, leading to a shorter integral

time scale and therefore a smaller eddy diffusivity. Both

the mixing length arguments leading to Kmix and the

Lagrangian approach leading toKL give identical results

when using the relation TL 5 g21 5 K0/EKE because

the effect on the mean flow on shortening the mixing

length L is equivalent to the effect on the shortening of

the integral time scale TL.

APPENDIX B

Tracer-Based Mixing Length

The theoretical expression for the mixing length Lmix

[Eq. (3)] depends only on eddy properties and the mean

flow. An alternative, empirical approach to define mix-

ing length, now dependent on a tracer, is (Armi and
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Stommel 1983; Thompson and Young 2007; Naveira

Garabato et al. 2011)

Ltracer 5

ffiffiffiffiffiffiffi
C02

p
Cy

, (B1)

where
ffiffiffiffiffiffiffi
C02

p
is the rms tracer fluctuation and Cy is the

large-scale tracer gradient. The simple idea behind this

definition is that tracer anomalies arise from turbulent

mixing across a mean gradient, which means that the

amplitude of the tracer anomalies must be related to the

distance over which the eddies mix tracer. An eddy

diffusivity is then defined as

Ktracer 5aurmsLtracer . (B2)

Note the different mixing efficiency a in contrast to G in

Eq. (3). This mixing length definition also rests on two

major assumptions (Naveira Garabato et al. 2011):

(i) tracer fluctuations are generated by local stirring of

the large-scale tracer gradient, with the advection of

tracer variance from upstream regions being negligible;

and (ii) the gradient of the tracer varies slowly over the

distance Ltracer.

We calculatedKtracer from our experiment with (cw 2
U) 5 0, that is, the velocity field that produces un-

suppressed diffusivities, to examine the relationship

between K0
obs and K0

tracer. As shown as dashed lines in

Fig. B1, these diffusivities agree very well with a mixing

efficiency of a 5 0.15, which is very close to the mixing

efficiency of a 5 0.16 estimated by Wunsch (1999). This

suggests that, in the unsuppressed mixing regime, eddy

diffusivities can in principle be estimated equivalently

using either the mixing length formation based on the

Eulerian velocity field, based on tracers, or from the

Lagrangian time scale.

We now repeat the exercise for suppressed diffusiv-

ities using realistic U(y), with both Kobs and Ktracer

shown as solid lines in Fig. B1. From this figure it can be

seen that the eddy diffusivity estimated from Eq. (B2)

is approximately a factor of 2 larger than Kobs. As in

Eq. (7), the mixing efficiency itself is quite dependent on

the properties of the flow, a conclusion also reached by

Thompson and Young (2007) in idealized simulation of

baroclinic turbulence. In contrast to the mixing effi-

ciency G, we cannot see an obvious relationship of awith

the mean flow.
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