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a b s t r a c t

Mesoscale eddies mix tracers along isopycnals and horizontally at the sea surface. This paper compares
different methods of diagnosing eddy mixing rates in an idealized, eddy-resolving model of a channel
flow meant to resemble the Antarctic Circumpolar Current. The first set of methods, the ‘‘perfect’’ diag-
nostics, are techniques suitable only to numerical models, in which detailed synoptic data is available.
The perfect diagnostic include flux-gradient diffusivities of buoyancy, QGPV, and Ertel PV; Nakamura
effective diffusivity; and the four-element diffusivity tensor calculated from an ensemble of passive
tracers. These diagnostics reveal a consistent picture of isopycnal mixing by eddies, with a pronounced
maximum near 1000 m depth. The isopycnal diffusivity differs from the buoyancy diffusivity, a.k.a. the
Gent–McWilliams transfer coefficient, which is weaker and peaks near the surface and bottom. The sec-
ond set of methods are observationally ‘‘practical’’ diagnostics. They involve monitoring the spreading of
tracers or Lagrangian particles in ways that are plausible in the field. We show how, with sufficient
ensemble size, the practical diagnostics agree with the perfect diagnostics in an average sense. Some
implications for eddy parameterization are discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mesoscale eddies play an important role in the transport of
heat, salt, potential vorticity, and carbon in the ocean, particularly
in the Southern Ocean (Marshall and Speer, 2012; Lauderdale et al.,
2013). Eddy transport can be described as the sum of an advective
flux and a diffusive flux along isopyncals (Redi, 1982; Griffies,
1998). Motivated by the importance of eddy fluxes, much recent
research has focused on characterizing the mixing properties of
mesoscale eddies in the Southern Ocean (Marshall et al., 2006,
2008, 2009,a,b, 2010, 2011, 2010,, 2012a,b,). A field campaign to
measure mixing rates, the Diapycnal and Isopycnal Mixing Exper-
iment in the Southern Ocean (a.k.a. DIMES; Gille et al., 2012), is
also underway.

Since eddy fluxes are so difficult to measure directly on a large
scale, the hope underlying these efforts is that better knowledge of
the eddy mixing rates will allow us to infer the eddy fluxes through
diffusive closures. However, a wide range of mixing diagnostics
have been employed, and the link between such diagnostics of
mixing and the actual eddy-induced transport is somewhat ob-
scure. A further complication is that the (Gent and McWilliams,
1990) eddy transfer coefficient, which is necessary for coarse-res-
olution models to parameterize eddy-induced advection, is not re-
lated to the eddy diffusivity in a simple way (Smith and Marshall,
2009).

The goal of this paper is to directly compare various methods of
diagnosing isopycnal mixing. Some of these diagnostics are possi-
ble only in the context of a numerical model, in which all the
dynamical fields are known exactly. We call these ‘‘perfect’’ diag-
nostics. We also consider less precise diagnostics which can poten-
tially be applied to the real ocean, for example, in DIMES. We call
these ‘‘practical’’ diagnostics.

This study builds on many previous works, beginning with
Plumb and Mahlman (1987), who first proposed the method for
inferring K, the eddy diffusivity tensor, in an atmospheric model.
A comparison between the diffusivities of passive tracers, potential
vorticity, and buoyancy was performed by Treguier (1999) in a
primitive-equation model and later in a quasi-geostrophic model
by [henceforth SM09] Smith and Marshall (2009). Our study builds
on their approach by using primitive equations, including a more
realistic residual meridional overturning circulation, and by calcu-
lating diffusivities as functions of y and z, rather than z alone. Mar-
shall et al. (2006), Abernathey et al. (2010), Ferrari and Nikurashin
(2010) and Lu and Speer (2010) all calculated ‘‘effective diffusivity’’
based on the method of Nakamura (1996), but did not compare
their calculations to other mixing diagnostics. Klocker et al.
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(2012a) demonstrated the equivalence between tracer and parti-
cle-based diffusivities, but did so only in a 2D flow; here we work
in three dimensions. In summary, the program of this paper is to
synthesize and summarize these disparate methods in a flow with
a plausible meridional overturning circulation, and then to com-
pare them with the less precise methods available in the field.

Our central conclusion is that disparate methods do in fact give
reasonably similar results; we find roughly the same diffusivities
for passive tracers, Lagrangian floats, quasigeostrophic potential
vorticity, and planetary Ertel potential vorticity. These all have
similar magnitudes and vertical structures, with a pronounced
mid-depth maximum. But, as previously reported by Treguier
(1999) and SM09, none of them is very similar to the Gent–McWil-
liams coefficient, which has a lower magnitude and different verti-
cal structure.

2. Numerical model

The model flow is meant to resemble the Antarctic Circumpolar
Current. The domain, numerical configuration, and forcing are
identical to the model described in Abernathey et al. (2011) and
Hill et al. (2012), which the reader should consult for a detailed
description.

The Boussinesq primitive equations are solved using the MIT-
gcm (Marshall et al., 1997; Marshall et al., 1997). The domain is
a zonally reentrant channel on a b-plane, of dimensions Lx x Ly x
H, where Lx ¼1000 km, Ly ¼ 2000 km, and H ¼ 2985 m. It is forced
at the surface with a zonal wind stress and a fixed heat flux. The
forcing and domain, along with a snapshot of the temperature
field, are illustrated in Fig. 1. The wind stress forcing is a sinusoid
which peaks in the center of the domain at 0.2 N m�2. The heat flux
consists of sinusoidally alternating regions of cooling, heating, and
Fig. 1. Overview of the model setup. On the left, the colored box is a snapshot of the insta
mean zonal flow, contoured every 2.5 cm s�1. Above are the surface wind stress and
streamfunction Wiso in Sv (red for positive, blue for negative), calculated according to (1
upper and lower boundaries of the surface diabatic layer, and the black contour the mea
coordinates; the black contours are the mean isopycnals and the gray contour is the botto
figure caption, the reader is referred to the web version of this article.)
cooling, with an amplitude of 10 W m�2. There is a sponge layer at
the northern boundary, in which the temperature is relaxed to an
exponential stratification profile with an e-folding scale of 1000 m.
A second-order-moment advection scheme is used to minimize
spurious numerical diffusion (Prather, 1986), resulting in an effec-
tive diapycnal diffusivity of approx. 10�5 m2 s�1 (Hill et al., 2012).
The model contains no salt and uses a linear equation of state;
the buoyancy is simply b ¼ gaTh, where g is gravity, aT is the con-
stant thermal expansion coefficient, and h is the potential
temperature.

The fine resolution (5 km in the horizontal, 40 vertical levels),
together with the forcing, which maintains a baroclinically unsta-
ble background state, allows an energetic mesoscale eddy field to
develop. Without the sponge layer, the eddy-induced overturning
circulation would nearly cancel the wind-driven Eulerian-mean
overturning circulation, resulting in a very small residual overturn-
ing circulation, a situation described by Kuo et al. (2005). However,
the presence of the sponge layer, in conjunction with the applied
pattern of heating and cooling, produces a residual overturning
that qualitatively resembles the real Southern Ocean, as described
by Marshall and Radko (2003) or Lumpkin and Speer (2007) (see
for further detail Abernathey et al., 2011).

This residual overturning circulation is obtained by averaging
the meridional transport v in layers of constant buoyancy b; the
streamfunction obtained this way is defined as

Wisoðy; bÞ ¼
1
Dt

Z t0þDt

t0

Z Z 0

�D
vHðbÞdzdxdt; ð1Þ

where H is the heaviside function and D is the depth. In Fig. 1 we
plot Wiso in its native buoyancy coordinates and also mapped back
into depth coordinates. The figure reveals two distinct cells: a coun-
ntaneous temperature, ranging from 0 to 8 �C; immediately to the right is the time-
heat flux fields. The panels on the right two views of the residual overturning
). On top, Wiso is plotted in buoyancy coordinates; the gray contours delineate the
n sea-surface temperature. On the bottom in, Wiso has been mapped back to depth
m of the surface diabatic layer. (For interpretation of the references to colour in this
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terclockwise lower cell, analogous to the Antarctic-Bottom-Water
branch of the global MOC (Ito and Marshall, 2008); and a clockwise
mid-depth cell, analogous to the upper branch of the global MOC
(Marshall and Speer, 2012). There is also a shallow subduction re-
gion in the north of the domain that can be viewed as a mode-water
formation region.

The fact that our model has non-zero interior residual circula-
tion also implies that there are non-zero gradients and eddy fluxes
of potential vorticity (PV) in the interior. These PV fluxes are di-
rectly related to the residual transport (Andrews et al., 1987;
Plumb and Ferrari, 2005). The presence of non-zero interior PV is
a key property that allows us to demonstrate the similarity in
the mixing of dynamically passive tracers and floats to the dynam-
ically active mixing of PV. In the following sections, the velocity
field from the equilibrated model will be used to advect passive
tracers and particles.

It should be noted that, because our model has no topography,
the wind stress is balanced by bottom frictional drag rather than
topographic form drag. This means that the model has a very large
barotropic zonal mean flow, leading to an unrealistically large zo-
nal transport (approx. 800 Sv). The thermal-wind induced trans-
port, however, is much more realistic (approx. 100 Sv). Given the
known importance of the mean flow in suppressing meridional
mixing in the ACC (Abernathey et al., 2010; Ferrari and Nikurashin,
2010), it is reasonable to ask whether this flow will affect the mea-
sured mixing rates. In fact, we do not expect this unrealistic zonal
transport to affect our results substantially. This is because the
suppression factor due to the mean flow is proportional to
ðU � cÞ2, where U is the mean zonal velocity and c is the eddy phase
speed (Ferrari and Nikurashin, 2010). The addition of a barotropic
mean flow translates the eddies along with it, augmenting U and c
similarly (Klocker and Marshall, 2013, manuscript submitted to J.
Phys. Oceanogr.). It is the relative propagation that depends on the
PV gradient. In the simplest case, consider a barotropic Rossby
wave in the presence of a mean flow: the dispersion relation is
U � c ¼ b=k2 where b is the planetary vorticity gradient and k is
the wavenumber. In our case, the dispersion relation is more com-
plex, but the same principle applies.

The great advantage of using a domain without topography is
the zonal symmetry, which permits us to focus only on meridional
mixing rates, rather than the much more difficult problem of two-
dimensional mixing. Indeed many of our diagnostics (e.g. Keff ) can-
not be applied locally in two dimensions. The zonal average also
serves to eliminate the contribution of rotational fluxes, which
can contaminate the down-gradient nature of the eddy flux (Mar-
shall and Shutts, 1981).
3. Perfect mixing diagnostics

The ‘‘perfect’’ mixing diagnostics are quantities which can be
calculated only with very detailed synoptic knowledge of the flow.
Such diagnostics provide the most complete characterization of
mixing and transport possible. They are straightforward to extract
from numerical models but nearly impossible for the real ocean. By
contrast, in the atmosphere, some perfect diagnostics can be calcu-
lated directly from observations (e.g.Nakamura and Ma, 1997) or
from reanalysis products (e.g.Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b).

Observational problems aside, the interpretation of perfect mix-
ing diagnostics still poses a challenge. Different diagnostics have
been used throughout the literature to characterize eddy mixing,
and the relationship between these diagnostics is not always obvi-
ous. Our purpose here is to consolidate many different diagnostics
in one place and show their relationship. A similar study was made
for the atmosphere by Plumb and Mahlman (1987) hereafter
PM87, who also review some theoretical aspects. Here we basically
repeat their methodology for this ACC-like flow.

Below each diagnostic is described and discussed individually. A
summary comparison of all the perfect isopycnal diffusivities can
be found in the discussion at the end of this section (Section 3.3)
and in Fig. 8.

3.1. Passive tracers

Our starting point is to examine the mixing of passive tracers.
Passive tracers obey an advection–diffusion equation of the form

@c
@t
þ v � rc ¼ jr2c þ C; ð2Þ

where c is the tracer concentration, v is the velocity field, j is a
small-scale diffusivity, and C is a source or sink. We will focus on
cases where C ¼ 0 and the diffusive term is negligible for the
large-scale budget of c. (Some small-scale diffusion is necessary
for mixing to occur, and likewise it is impossible to eliminate diffu-
sion completely from numerical models. But for flows of large
Péclet number, diffusion is an important term only in the tracer var-
iance budget, not the mean tracer budget itself.)

3.1.1. Diffusivity tensor
PM87 performed a detailed study of the transport characteris-

tics of a model atmosphere using passive tracers. Here we briefly
review their definition of K, the diffusivity tensor, which we view
as the most complete diagnostic of eddy transport. The reader is re-
ferred to Plumb and Mahlman, 1987 or Bachman and Fox-Kemper
(2013) for a more in-depth discussion.

Taking a zonal average of (2) (indicated by an overbar) and
neglecting the RHS terms, we obtain

@c
@t
þ v � rc ¼ �r � Fc; ð3Þ

where Fc ¼ ðv 0c0;w0c0Þ is the eddy flux of tracer in the meridional
plane. The diffusivity tensor K relates this flux to the background
gradient in each direction; it is defined by

Fc ¼ �K � rc: ð4Þ

This equation is underdetermined for a single tracer, but PM87 used
multiple tracers with different background gradients to calculate it.
This method has also recently been applied by Bachman and Fox-
Kemper (2013) in an oceanic context.

We found K by solving (4) for six independent tracers. In this
case, (4) is overdetermined, and the ‘‘solution’’ is a least-squares
best fit (Bratseth, 1998; Bachman and Fox-Kemper, 2013). The ini-
tial tracer concentrations used were as follows:
c1 ¼ y; c2 ¼ z; c3 ¼ cosðpy=LyÞ cosðpz=HÞ; c5 ¼ sinðpy=LyÞ sinðpz=HÞ;
c5 ¼ sinðpy=LyÞ sinð2pz=HÞ; c6 ¼ cosð2py=LyÞ cosðpz=HÞ. (We exper-
imented with different initial concentrations, but found the results
to be insensitive to this detail, provided many tracers with differ-
ent gradients were used.) The tracers were allowed to evolve from
these initial conditions for one year. (An experiment with two
years of evolution produced very similar results.) Fc and rc were
calculated for each tracer by performing a zonal and time average
over the one-year period and then over an ensemble of 20 different
years. In matrix form, the equation solved to find Kðy; zÞ was

v 0c01 v 0c02 . . . v 0c06
w0c01 w0c02 . . . w0c06

" #

¼ �
Kyy Kyz

Kzy Kzz

� �
@c1=@y @c2=@y . . . @c6=@y
@c1=@z @c2=@z . . . @c6=@z

� �
;

ð5Þ

where each element of K at each point in ðy; zÞ space is a least-
squares estimate that minimizes the error across all tracers. In
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general the fit is very good, with R2 > 0:99 in much of the domain
and R2 > 0:9 nearly everywhere. A more detailed discussion of the
errors involved in the diffusivity inversion can be found in Appendix
A.

It is most informative to decompose K into two parts,

K ¼ LþD; ð6Þ

where L is an antisymmetric tensor and D is symmetric. Because
the flux due to L is normal to rc, its effects are advective, rather
than diffusive (Plumb, 1979; Plumb and Mahlman, 1987; Griffies,
1998). Using this fact, we can rewrite (3) as

@c
@t
þ ðv þ vyÞ � rc ¼ r � ðD � rcÞ; ð7Þ

where vy ¼ ðvy;wyÞ is an eddy-induced effective transport velocity,
defined by a streamfunction v, such that

vy ¼ �@v=@z; wy ¼ @v=@y ð8Þ

and

L ¼
0 �v
v 0

� �
: ð9Þ

Under adiabatic conditions, v is approximately equal to the trans-
formed-Eulerian-mean eddy-induced streamfunction, or the ‘‘bolus
transport’’ streamfunction in thickness-weighted isopycnal coordi-
nates. Again, for more detailed discussion, the reader is referred
to PM87.

Because L is advective in nature (and does not appear in the tra-
cer variance budget), all of the actual mixing due to eddies is con-
tained in D (Nakamura, 2001). Since D is symmetric, it can be
diagonalized by coordinate rotation. Let Ua be the rotation matrix
for angle a. In the rotated coordinate system, the flux due to D is

�UaDrc ¼ �UaDUT
aUarc ¼ �D0Uarc; ð10Þ

where D0 ¼ UaDUT
a. Solving for the a that makes D0 diagonal, we

find

tan 2a ¼ 2Dyz

Dyy � Dzz
: ð11Þ
Fig. 2. The major-axis diffusivity tensor D0yy , contoured in color, with the mixing angle a
(contour interval 0.5 �C), and the baroclinc component of the zonal-mean velocity is sho
The rotated matrix,

D0 ¼
D0yy 0

0 D0zz

" #
ð12Þ

describes the eddy diffusion along (D0yy, the major-axis diffusivity)
and across (D0zz, the minor-axis diffusivity) the plane defined by a,
which we call the mixing angle. For small a, it is convenient to
approximate a ’ Dyz=Dyy;D

0
yy ’ Dyy, and D0zz ’ Dzz � D2

yz=Dyy.
The physical interpretation of K is therefore best summarized

by four quantities: v;a;D0yy, and D0zz. The most relevant for this
study, which is concerned with isopycnal mixing, are D0yy and a,
the major axis diffusivity and the mixing angle, which are plotted
in Fig. 2. From this figure, we see that the mixing angle is along iso-
pycnals throughout most of the domain, except close the surface,
where the mixing acquires a more horizontal character. This pat-
tern is consistent with the paradigm that ocean eddies mix adia-
batically in the interior and diabatically in the ‘‘surface diabatic
layer,’’ i.e. the layer over which isopycnals outcrop (Treguier
et al., 1997; Cerovecki and Marshall, 2008). Consequently, D0yy

can be described as an isopycnal eddy diffusivity in most of the
interior. Because of the small aspect ratio, and consequently small
a;D0yy ’ Dyy is a very good approximation.

An obvious feature in the spatial structure of D0yy is a pro-
nounced peak at mid-depth (approx. 1200 m). Enhanced isopycnal
mixing at a mid-depth ‘‘critical layer’’ is a general feature of baro-
clinically unstable jets (Green, 1970; Killworth, 1997). Many stud-
ies have confirmed the presence of an enhanced mid-depth mixing
layer in the ACC (Smith and Marshall, 2009; Abernathey et al.,
2010; Naveira-Garabato et al., 2011; Klocker et al., 2012a). Our
highly idealized model evidently shares this behavior. It is also
important to note, though, that D0yy varies even more strongly with
y, with the strongest mixing being in the center of the channel.

3.1.2. Eddy-induced advection
The streamfunction v, derived from the anti-symmetric part

of K, describes an eddy-induced advective transport in the
meridional plane. For statistically steady, adiabatic conditions,
this circulation is expected to approximately equal both the
indicated by the black dashes. The mean isopycnals are shown in white contours
wn in grey (contour interval 1 cm s�1).
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transformed-Eulerian-mean eddy-induced circulation and the
eddy-driven ‘‘bolus transport’’ in isopycnal thickness-weighted
averaging (PM87; McIntosh and McDougall, 1996). A complete dis-
cussion and comparison of these different conventions for defining
eddy-induced advection is beyond the scope of this paper, which is
focused on isopycnal mixing. Here we simply note that v is indeed
quite close to the eddy-induced transport W� diagnosed by Aberna-
they et al. (2011), calculated as Wiso (the thickness-weighted circu-
lation defined in (1)) minus the Eulerian component. As seen in
Fig. 3, the spatial structure and magnitude are quite close, but v
contains more small scale variance. This similarity supports the no-
tion that the transport processes at work in our model are not
heavily tracer dependent, and that the transport of passive tracers,
buoyancy, and mass can be characterized accurately by a single
tensor K.

3.1.3. Nakamura effective diffusivity
The framework developed by Nakamura (1996) has gained

widespread use in assessing lateral mixing in the ocean and atmo-
sphere (Nakamura and Ma, 1997; Haynes and Shuckburgh, 2000a;
Haynes and Shuckburgh, 2000b; Marshall et al., 2006; Abernathey
et al., 2010; Klocker et al., 2012a). This framework relies on a tra-
cer-based coordinate system, in which the flux across tracer isosur-
faces can be characterized by an effective diffusivity, which
depends only on the instantaneous tracer geometry. A similar con-
cept was developed by Winters and D’Asaro (1996).

The effective diffusivity is defined as

Keff ¼ j
L2

e

L2
min

; ð13Þ

where Le is the equivalent length of a tracer contour that has been
stretched by eddy stirring and Lmin is the minimum possible length
Fig. 4. Nakamura effective diffusivity calculated on a passive tracer after 10 months of e
release experiments. In the left panel, KH

eff was calculated on slices of c at constant z (horiz
The right panel shows Kiso

eff mapped back to depth space using the mean isopycnal depth

Fig. 3. (left) The streamfunction v, derived from the anti-symmetric part of K, multiplied
bolus transport streamfunction W� from Abernathey et al. (2011), calculated as Wiso (the
of such a contour, in this case, simply the domain width in the zonal
direction. For further background and details regarding the Keff cal-
culation, the reader is referred to Marshall et al. (2006).

As described in the preceding section, the model was con-
structed to be as adiabatic as possible, with explicit horizontal
and vertical diffusion set to zero. However, the effective diffusivity
framework requires a constant small-scale background horizontal
diffusivity j. Therefore, in the tracer advection for the effective dif-
fusivity experiments, we used an explicit horizontal diffusivity of
j ¼ 50 m2 s�1. Analysis of the tracer variance budget indicated that
numerical diffusion elevated this value slightly, to 55 m2 s�1. We
performed our experiments by initializing a passive tracer with
concentration c ¼ y and allowing it to evolve under advection
and diffusion for two years. Every month, a snapshot of c and T
was output. This procedure was repeated for 10 consecutive two-
year periods, to create a smooth ensemble-average picture of the
evolution of Keff over two years.

The 3D tracer field must be sliced into 2D surfaces in order to
compute Keff ðyÞ. The most straightforward way to accomplish this
is to examine surfaces of c at constant z; we call this KH

eff . However,
since the mixing angle is along isopycnals, a more physically rele-
vant choice is to project c into isopycnal coordinates; the effective
diffusivity computed from this projection we call Kiso

eff . Abernathey
et al. (2010) tried both methods, and here we do the same.

After two months, the overall magnitude of both Keff calcula-
tions stabilizes and remains roughly constant, as does the spatial
structure of Kiso

eff . The spatial structure of KH
eff , on the other hand,

continues to evolve over the two year period, departing further
and further from Kiso

eff . The results of one Keff ensemble calculation
(at 10 months) are shown in Fig. 4. Comparing this figure with
Fig. 2, we see that Kiso

eff is very similar in magnitude and spatial
structure to D0yy. This agreement between these two diagnostics,
volution. Values shown are an average over an ensemble of 10 independent tracer-
ontal). In the middle panel, Kiso

eff was calculated on slices of c at constant T (isopycnal).
s.

by Lx (the domain width) to give units of Sv (106 m3 s�1). (right) The eddy-induced
thickness-weighted circulation) minus the Eulerian component.



Fig. 5. Left panel: mean meridonal QGPV gradient Qy . Middle: eddy QGPV flux v 0q0 . Right: QGPV diffusivity Kq . The left two quantities were masked where bz < 2� 10�7 s�1

(i.e. weak stratification) to avoid dividing by this small number. Kq was additionally masked in places where jQyj < b=2, where the QGPV gradient crosses zero. The masked
areas are colored gray.
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based on quite different methods, is expected but nevertheless
encouraging. KH

eff , on the other hand, while having the right general
magnitude, has significant differences in spatial structure. From
this we conclude that KH

eff is somewhat misleading diagnostic;
since the mixing angle a is aligned with the isopycnals, it is not
physically justified to examine the tracer on level surfaces. Kiso

eff ,
on the other hand, is a robust diagnostic of isopycnal mixing.

3.2. Active tracers

Now we compute flux-gradient diffusivities for active tracers.
By active tracers we mean scalars which are advected by the flow
but which also affect the dynamics of the flow. The active tracers
we consider are potential vorticity (both planetary Ertel and qua-
si-geostrophic varieties) and buoyancy. Also, unlike the passive
tracers, these active tracers are forced at the surface, and their zo-
nal means have reached a steady-state equilibrium. Therefore, it is
interesting to ask whether they experience the same diffusivity as
the passive tracers.

3.2.1. QGPV diffusivity
Quasi-geostrophic theory predicts that stirring by mesoscale

eddies will lead to a down-gradient flux of quasi-geostophic poten-
tial vorticity (QGPV) in the ocean interior (Rhines and Young,
1982). Although this down-gradient relationship cannot be ex-
pected to hold locally at every point in the ocean, it is much more
robust in a zonally-averaged context, which eliminates rotational
fluxes from the enstrophy budget (Marshall and Shutts, 1981; Wil-
son and Williams, 2004). Although our model is based on primitive
equations, certain quasi-geostrophic quantities can nevertheless
be calculated (Treguier et al., 1997). Of interest here is the eddy
QGPV flux1

v 0q0 ¼ f0
@

@z
v 0b0

bz

 !
ð14Þ

and the background meridional QGPV gradient

Q y ¼ b� f0
@sb

@z
; ð15Þ

where sb ¼ �ð@b=@yÞ=ð@b=@zÞ is the mean isopycnal slope. The
QGPV diffusivity is then defined as

Kq ¼ �v 0q0=Q y: ð16Þ
1 The QGPV flux also includes a Reynolds-stress term @yðu0v 0Þ. In our model, this
term is an order of magnitude smaller, as expected from standard oceanographic
scaling arguments (Vallis, 2006), and has therefore been neglected. Consistently, the
relative vorticity gradient has also been neglected in the definition of Qy.
The importance of the QGPV flux in the momentum budget is dis-
cussed in Treguier et al. (1997).

All three of these quantities are plotted in Fig. 5. First we note
that, where Qy is nonzero, there is indeed a strong anti-correlation
between Qy and v 0q0, supporting the notion of a down-gradient
transfer of QGPV. This is reflected by the fact that Kq is positive
nearly everywhere. (The relationship breaks down near the sur-
face, which we attribute to the presence of strong forcing terms
and an unstratified mixed layer, making the QG approximation it-
self invalid.) Furthermore, comparing Fig. 5 with Fig. 2, we see a
strong resemblance between Kq and D0yy, both in magnitude and
spatial structure. The calculation of Kq involves computing many
derivatives in both y and z. We expected to find a very noisy result,
and are consequently pleasantly surprised by this agreement. Kq is
also very similar to Kiso

eff , supporting the choice by Abernathey et al.
(2010) to equate these quantities in a diffusive closure for the eddy
QGPV flux.

3.2.2. Isopycnal planetary ertel PV diffusivity
Through the well-known correspondence between the quasige-

ostrophic framework and analysis in isopycnal coordinates, the
QGPV flux can be recast as a flux of Ertel potential vorticity along
isopycnals (Andrews et al., 1987). Analysis of the tracer variance
budget in isopycnal coordinates also supports a down-gradient dif-
fusive closure for the PV flux in this framework (Jansen and Ferrari,
2013). Here we calculate the along-isopycnal Ertel PV diffusivity
directly. In our context, the Ertel PV is very well captured by the
planetary approximation, in which relative vorticity is neglected;
our definition of Ertel PV is therefore P ¼ f@b=@z.

The isopycnal diffusivity of Ertel potential vorticity is defined as

KP ¼ �v̂bP�= @P�

@y
: ð17Þ

The �⁄ symbol indicates a generalized thickness-weighted zonal
average along isopycnals, and the ^ symbol the anomaly from that
average. (For further details of thickness-weighted averaging in iso-
pycnal coordinates and associated notation, the reader is referred to
Jansen and Ferrari (2013).) All the factors in (17) are plotted in
Fig. 6, in buoyancy space rather than depth. The strong similarity
between the fluxes and gradients in the QG and isopycnal frame-
works confirms the mathematical correspondence between these
two forms of analysis. Furthermore, the spatial structure and mag-
nitude of KP in the interior is quite similar to Kiso

eff (Fig. 4, middle)
and, when mapped back to depth coordinates (not plotted), to D0yy

and Kq. The down-gradient nature of the flux also clearly breaks
down in the surface layer, due to factors such as the presence of
strong forcing terms and the intermittent outcropping of
isopycnals.



Fig. 6. Left panel: mean meridonal/ isopycnal Ertel PV gradient qb
�P�y , plotted in buoyancy space. (Multiplication by the factor qb

� gives the same units as the QGPV gradient
in Fig. 5.) Middle: eddy Ertel PV flux qb

�v̂ P̂� . Right: Ertel PV diffusiviy KP . As in Fig. 5, the gradient has been masked where its absolute value is less than b=2. The masked areas
are colored gray. The black contours indicate the 5%, 50%, and 95% levels of the surface buoyancy cumulative distribution function.
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3.2.3. Buoyancy diffusivity
The horizontal buoyancy diffusivity is an important yet prob-

lematic quantity, defined as

Kb ¼ �
v 0b0

by

: ð18Þ

For quasigeostrophic, adiabatic eddies, this quantity is equal to the
Gent and McWilliams (1990) transfer coefficient (Treguier et al.,
1997), which plays a central role in the parameterization of eddy-
induced advection in numerical models (Gent et al., 1995; Griffies,
1998) and in the theory of the Southern Ocean overturning circula-
tion (Marshall and Radko, 2003; Nikurashin and Vallis, 2012). It is
commonly also referred to as the GM coefficient or the ‘‘thickness
diffusivity.’’ The term thickness diffusivity is especially problematic
when mixing rates are spatially variable; in this case it can be
shown that the isopycnal thickness diffusion is not equal to Kb

and, in fact, that isopycnal thickness diffusion is more closely re-
lated to PV diffusion (see discussion in Section 3 Gent et al., 1995,
of who were aware of the distinction). Nevertheless, knowledge of
Kb is a very important quantity, since nearly all numerical models
use the Gent–McWilliams parameterization. In the full three-
dimensional case (as opposed to the zonally averaged case consid-
ered here), a different value of Kb is defined for each of the distinct
components (zonal and meridional) of the horizontal flux (Griffies,
1998).

Kb is not, properly speaking, a diffusivity at all in the Fickian
sense. This is because, in the adiabatic interior, the eddy buoyancy
flux Fb (of which v 0b0 is only one component) is directed almost en-
tirely perpendicular to the buoyancy gradient (Griffies, 1998; Plumb
and Ferrari, 2005). There is no down-gradient eddy flux of
Fig. 7. (left) horizontal buoyancy diffusivity Kb calculated from (
buoyancy, only a ‘‘skew flux.’’ In Section 3.1.1, we observed that
the mixing angle a in the interior satisfies a ’ �by=bz. This means
that the contribution to v 0b0 from �Drb is due only to the diapyc-
nal diffusvity D0zz, which is negligibly small, and consequently that
the eddy buoyancy fluxes are captured by L alone (in fact by a sin-
gle scalar v). Using (4) and (6), we see that

Kb ’ v=sb; ð19Þ

where sb ¼ �by=bz is the mean isopycnal slope. The buoyancy diffu-
sivity Kb is related to the eddy-induced streamfunction v and the
isopycnal slope, i.e. to the advective part of the eddy transport,
not the diffusive part. This relation is in fact a key assumption of
the Gent and McWilliams (1990) parameterization.

We have plotted both sides of (19) as well as a scatter plot of
their relationship in Fig. 7, illustrating the similarity between the
two quantities. (The small differences between Kb and v=sb can
be attributed to diabatic effects.) Comparison with Fig. (2) reveals
significant differences between Kb and D0yy. Noting the different
color scales used in Figs. 7 and 2, it is evident that overall magni-
tude of Kb is roughly half that of D0yy. Significant differences in spa-
tial structure are also present. For instance, Kb has its highest
values at the bottom and top of the water column, while D0yy has
its maximum at mid-depth. It is particularly important to point
out these differences because it is quite common to assume that
D0yy ¼ Kb in the context of eddy parameterization (Gent and McWil-
liams, 1990; Gent et al., 1995; Griffies, 1998). Such an assumption
is clearly not supported by our simulations. Similarly, Liu et al.
(2012) used an adjoint-based method to infer Kb and then dis-
cussed the results in terms of the mixing-length ideas of Ferrari
and Nikurashin (2010), which are more relevant to D0yy of Kiso

eff .
Our results, in addition to those of previous authors (SM09;
18). (center) v=sb . (right) Scatter plot of the two quantities.



Fig. 8. Scatter plots of different measurements of isopycnal diffusivity vs. D0yy . Quantities are Kiso
eff (the isopycnal effective diffusivity of Nakamura), Kq (the QGPV diffusivity),

and KP (the planetary Ertel PV diffusivity).
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Treguier, 1999) suggest this comparison is unsound. In Section 5,
we will further explore the relationship between Kb and D0yy and
discuss the parameterization problem.
3.3. Summary

So far in this section we have seen strong agreement between
different perfect diagnostics of isopycnal mixing. In particular,
D0yy;K

iso
eff ;Kq, and KP all give a similar picture of along-isopycnal mix-

ing rates. The strength of along-isopycnal mixing varies between
3000 and 7000 m2s�1 in the middle of the domain, with a pro-
nounced peak between 1000 and 1500 m depth. Mixing rates fall
off sharply at the northern and southern edges of the domain. To
make the comparison between diagnostics more quantitative, we
now show scatter plots of Kiso

eff ;Kq, and KP vs. D0yy (which we take
to be our reference ‘‘truth’’ for isopyncal mixing rates) in Fig. 8.
To construct these plots, the diffusivities defined in isopycnal coor-
dinates were first interpolated to depth space. The figure reveals a
tight relationship between D0yy;K

iso
eff , which are both well-defined

everywhere in the domain. The comparison with the PV diffusivi-
ties is more noisy, especially for shallow depths, where QG scaling
breaks down due to the presence of the mixed layer and the pres-
ence of forcing (including strong diapycnal mixing) disrupts the
simple down-gradient diffusion of PV. The spread is also due to
the fact that the PV gradient goes through zero several times in
the domain, at which points the diffusivity definition breaks down.
Nevertheless, for depths below 500 m, the correlation of Kq and KP

with D0yy is good. The figure also reveals, from a different perspec-
tive, that the highest diffusivities for all four quantities occur at
depths between 1000 and 1500 m.

As expected from previous studies (SM09; Treguier, 1999), the
buoyancy diffusivity Kb does not agree with the other mixing diag-
nostics, differing both in magnitude and vertical structure. This re-
flects the fact that Kb is a ‘‘skew’’ diffusivity rather than an
isopycnal diffusivity (Griffies, 1998). We now turn to the question
of how, and how accurately, the isopycnal mixing rates can be in-
ferred from experiments in the field.
4. Practical mixing diagnostics

4.1. Lagrangian diffusivity

One of the two most common methods to estimate isopycnal
diffusion in observational programs is the use of Lagrangian trajec-
tories of either surface drifters or subsurface floats (e.g. Davis,
1991; LaCasce, 2008). (The other method, described in the next
subsection, is to use tracer release experiments.) Lagrangian diffu-
sivities are calculated from the mean square separation of an
ensemble of N drifters or floats (called simply ‘‘particles’’ from here
on) from their starting positions. This is the single-particle diffusiv-
ity of Taylor (1921):

K1yðy0; tÞ ¼
1
2

d
dt

1
N

XN

i¼1

ðyiðtÞ � yi0Þ
2

" #
: ð20Þ

Here yiðtÞ is the meridional position of a particle released at yi0 at
t ¼ 0. Lagrangian diffusivities can also be calculated using the
mean-square separation of particles relative to each other. Both
the single-particle diffusivity and the relative diffusivity asymptote
at long times (e.g. Davis, 1985). As shown by Taylor (1921), these
eddy diffusivities are equal to the integral of the Lagrangian auto-
correlation function, which in case of the single-particle diffusivity
can be written as:

K1yðy0; tÞ ¼
Z t

0
Rvvðy0; sÞ; ð21Þ

where

Rvvðy0; sÞ ¼
1
N

XN

i¼1

v iðsÞv ið0Þ: ð22Þ

Here v iðtÞ is the meridional velocity of particle i. If the autocorrela-
tion reaches zero after a finite time, the Lagrangian diffusivity
K1yðy0; tÞ will asymptote to a constant value (Taylor, 1921).

Here it is important to note that it is necessary to have sufficient
Lagrangian statistics to resolve this Lagrangian autocorrelation
function until it decorrelates; the error is expected to decrease as
n�1=2, where n is the number of particles (Davis, 1994). Klocker
et al. (2012b) have shown that this Lagrangian autocorrelation
function has two parts—an exponential decaying part and an oscil-
latory part. If integrating just over the exponential decaying part,
one would derive an eddy diffusivity for the case in which the
mean flow does not influence the diffusivity. But as shown by sev-
eral recent studies (Marshall et al., 2006; Abernathey et al., 2010;
Ferrari and Nikurashin, 2010), eddy diffusivities are influenced by
the mean flow; this can be seen as the oscillatory part of the
Lagrangian autocorrelation function (Klocker et al., 2012b). Resolv-
ing this oscillatory part requires a much larger number of particles,
and therefore leads to strong limitations in observational programs
due to the limited number of drifters and floats deployed in those
programs. (See Klocker et al. (2012b) for a more detailed explora-
tion of the issue of using limited Lagrangian statistics to derive
eddy diffusivities in observational studies.).

In numerical simulations, we can just increase the number of
floats until the errors are vanishingly small. To calculate eddy dif-
fusivities in this study, floats are deployed at every grid point (i.e.
every 5 km) within a region which extends over the whole model
domain in the zonal direction and over a width of 100 km, centered
in the channel, in meridional direction. This results in a total of
4000 floats at each depth. In the vertical, there were 40 different
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release depths corresponding to the model’s vertical grid. The
floats are then advected for one year by the full three-dimensional
flow, with positions output every day. Lagrangian eddy diffusivities
are calculated at each depth according to (21), with the eddy diffu-
sivity being calculated as an average over days 30–40. Examples for
the Lagrangian autocorrelation function, Rvv , and the Lagrangian
eddy diffusivity, K1y are shown in Fig. 9a for floats deplayed at a
depth of 100 m and 9b for floats deployed at a depth of 1500 m.
Fig. 9a shows a typical example for a depth where the mean flow
plays an important role in suppressing eddy diffusivities, with
Rvv showing an exponential decay and an oscillatory part, leading
to an eddy diffusivity K1y which first increases to approx.
8000 m2 s�1 and then converges at approx. 4000 m2 s�1. Fig. 9b
shows both Rvv and K1y for a depth where the mean flow does
not play an important role, i.e. Rvv only shows an exponential de-
cay and K1y increases until converging at approx. 3700 m2 s�1. In
Fig. 9. Lagrangian autocorrelation function Rvv (dashed) and K1y (solid) from

Fig. 10. (top, left) Horizontal tracer distribution at 975 m depth, 100 days after release
Only tracer concentration larger than 10�5 are plotted. (top, right) Meridional section t
(color) and temperature surfaces (white contours) 300 days after release (same release a
zonally averaged tracer concentration (in 10�4 units) 100 days after release: the red and b
shows the ensemble mean of all 16 tracer releases. The dashed black line is the least-squ
bottom left but after 300 days (in 10�5 units). (For interpretation of the references to co
both cases the Lagrangian autocorrelation function decorrelates
after approx. 30 days. The vertical profile of Lagrangian diffusivities
is shown in Fig. 13 (the overall comparison figure, discussed subse-
quently) and agrees well with other estimates of eddy diffusivities.
4.2. Tracer release

Another possible method to measure isopycnal diffusion in the
ocean is through the use of deliberate tracer release experiments.
Such techniques have already been successfully employed to esti-
mate diapycnal mixing by Ledwell and collaborators (Ledwell and
Bratkovich, 1995; Ledwell et al., 1998; Ledwell et al., 2011). In
these experiments, a passive dye is released as close as technically
possible to a target isopycnal in the ocean and its subsequent evo-
lution monitored over a few years. To quantify the vertical diffu-
sion, the tracer field is first averaged isopycnaly into one vertical
the particle release experiments at depths of (a) 100 m and (b) 1500 m.

near ðx; yÞ ¼ ð500;1000Þ km at 975 m depth. Note that only a subdomain is shown.
hough the channel at X = 1000 km showing a snap-shot of the tracer distribution
s that show in top left panel). (bottom left) Meridional profiles of the vertically and
lue curves shows two examples of a single tracer release while the solid black curve
ared fit Gaussian curve to the ensemble mean distribution. (bottom right) Same as

lour in this figure caption, the reader is referred to the web version of this article.)
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profile. These profiles are well approximated by a Gaussian whose
width r evolves linearly with time (as expected if the tracer field
spread vertically according to a simple one dimensional diffusion
equation). The vertical diffusion jv is then given by
jv ¼ ð1=2Þdr=dt. This method was also successfully applied to
the estimation of the effective diapycnal diffusion in a numerical
model in a setup very similar to the one used here (Hill et al.,
2012).

One hopes that isopycnal diffusion in the ocean could be esti-
mated using similar techniques by taking advantage of already col-
lected data (e.g. from the NATRE and DIMES campaigns; Ledwell
et al., 1998; Gille et al., 2012). To achieve this, one could monitor
the isopycnal spreading of the tracer by summing its 3D distribu-
tion vertically. To simplify further the problem here, we will zon-
ally average the resulting 2D map into a 1D profile and focus on
the meridional diffusivity KI . Unfortunately, one can readily see
that the tracer distribution is very patchy and its meridional profile
is poorly approximated by a Gaussian. Fig. 10 illustrates this point
in the channel, plotting the tracer distribution 100 days after re-
lease. (Details of the tracer-release experiments and diagnostic
methods are given in Appendix B.) The tracer patch is stretched
into long narrow filaments, cascading to small scales. Such behav-
ior is also observed in the real ocean (see Fig. 18 from Ledwell et al.
(1998)). Unlike the diapycnal case, the isopycnal dispersion of a
tracer patch does not fit a one-dimensional diffusion equation, at
least initially, effectively preventing a reliable estimation of KI .

One possible way to circumvent this issue is to consider an
ensemble of tracer releases. One expects that in an average sense,
the tracer does behave in a diffusive way. To test this, we perform
16 tracer releases in the model: 8 tracers are released simulta-
neously 125 km apart along the center of the channel, followed
by a second set of 8 releases 300 days later. The ensemble-mean
profiles at 100 and 300 days after release are shown in Fig. 10 (bot-
tom, black solid). Contrary to profiles from single releases, the
ensemble-mean profile already approaches a Gaussian shape after
100 days. Importantly, the width of the best-fit Gaussian curve to
the ensemble-mean profile (dashed black) grows linearly with
time after 150 days at most depths (see Appendix B for details).

The isopycnal diffusivity in the channel, estimated from the 16-
member ensemble mean, is plotted as a function of depth in
Fig. 11. Vertical profiles of the isopycnal diffusivity KI estimated from tracer release
experiments in the channel. The thick line denotes values estimated from
monitoring the evolution of the 16-member ensemble-mean tracer at each depth.
The mean (± one standard deviation) of isopycnal diffusivities computed by
following each tracer individually (16 values) are shown by a dashed-dotted line
and light grey shading. Similar quantities from 2-member ensemble-mean are
shown in solid black and dark grey shading.
Fig. 11. It increases from about 500 m2 s�1 in subsurface to slightly
more than 4000 m2 s�1 around 1100 m depth, and then decreases
to 3500 m2 s�1 near the bottom. Note that subsurface (300–
400 m) values are likely underestimates because, at these depths,
the tracers rapidly spread along isopycnals up to the surface dia-
batic layer and then horizontally at the surface (see details in
Appendix B). To obtain a more robust estimate near the surface,
a set of 16 tracer patches were released right into the mixed layer,
leading to an estimation of a surface (horizontal) diffusivity of
about 1500 m2 s�1; a slightly higher value than in subsurface
which is more consistent with the other estimates.

To give a sense of the uncertainties, the diffusivities estimated
from single tracer releases were also computed. The mean plus-
or-minus one standard deviation of those 16 estimates (at each
depth) are shown with a dashed black line and a light grey shading.
Similarly, diffusivities from pairs of tracer releases were also com-
puted (shown in dark grey shading and solid line). Uncertainties
associated with a single tracer release range from pm500 m2 s�1

near 500 m depth to ±1000 m2 s�1 or more below a 1000 m. It ap-
pears that estimates between 500 and 1000 m deep would be
somewhat robust. However, our results suggest that detection of
a peak of mixing in the water column would be very difficult from
single tracer releases at a few selected depths.
5. Comparison of all diagnostics

5.1. Averaging method

In Section 3 we saw that many of the different perfect diagnos-
tics (D0yy;K

iso
eff ;Kq and KP) give similar results. Now we compare

these results with the practical diagnostics discussed above. The
central obstacle in this comparison is the question of how to aver-
age meridionally the perfect diagnostics, which are functions of y
and z, to compare with the practical diagnostics, which are just
functions of z. The tracers and particles for the practical experi-
ments were released at the center of the domain and spread merid-
ionally along isopycnals for up to 300 days before encountering the
boundaries. This results in a single value of diffusivity for each re-
lease depth, or equivalently, release isopycnal.2 But as the particles/
tracers experience spread away from the center of the channel, they
experience weaker mixing towards the sides of the domain.

Our procedure is to average the perfect diagnostics in isopycnal
bands of thickness DT over a meridional extent Dy, centered on the
middle of the channel. Formally this average can be expressed as

hKiðT0Þ ¼
1
A

Z LyþDy=2

Ly�Dy=2

Z TðzÞ¼T0þDT=2

TðzÞ¼T0�DT=2
Kdydz; ð23Þ

where T0 is the target isopycnal and A is the cross-sectional area
over which the integral is performed.3 DT effectively sets the verti-
cal resolution of the averaged quantity, while Dy controls the width
over which it samples. Larger Dy are associated with smaller hKi,
since the diffusivities tend to fall off away from the center of the
channel. This effect is illustrated in Fig. 12, which shows hD0yyi for dif-
ferent values of Dy. The figure also shows the difference between iso-
pycnal averaging and simple horizontal averaging (i.e. averaging at
constant z), which is a more straightforward way to produce depth
2 It would be possible in principle to calculate the practical diagnostics also as
functions of y. But, in the spirit of simulating field experiments, we do not explore this
possibility as it involves an even greater number of releases.

3 Nakamura (2008) suggests that the proper way to average a spatially variable
diffusivity is through a harmonic mean. We tested this, however, and found it to
produce spurious results. This is because the harmonic mean is very sensitive to the
presence of small values. Since our diffusivities are calculated numerically and
contain some degree of noise at the grid scale, isolated small values can greatly
influence the harmonic mean. For this reason, we prefer the simple arithmetic mean.



Fig. 12. A comparison of meridional averages of D0yy computed on surfaces of constant height (left panel) and isopycnal surfaces, with various averaging widths Dy. The
average at constant height includes the whole domain, while the isopycnal average excludes the surface diabatic layer.
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profiles but is physically unsound. Instead, we map our profiles of
hKiðTÞ to depth coordinates using the temperature profile TðzÞ at
the tracer and particle release latitude in the center of the domain.4

To fairly compare our diagnostics in the interior, we must ex-
clude the surface diabatic layer from our average. This is because
PV is not diffused down gradient in the surface layer due to the
presence of strong forcing, which causes KP to acquire negative val-
ues there (see Fig. 6). For this reason, we limit our isopycnally aver-
aged diffusivities to the interior, which we define as the region
below the isopycnal representing the 95% contour of the surface
buoyancy cumulative distribution function. The effect of excluding
the surface layer can be seen in Fig. 12; the horizontal average,
which includes the surface layer, shows a secondary peak near
the surface, while the interior-only isopycnal average does not.

The choice of Dy clearly affects the magnitude of our averaged
perfect diagnostics. We have concluded that the optimum choice
is Dy ¼ 1500 km, i.e. an average over the most of the domain,
Fig. 13. A comparison of all the different diffusivity diagnostics presented in the paper. F
width of Dy ¼ 1500 m, and only in the interior (outside the surface diabatic layer). The
excluding the area closest to the walls. This choice produced the
best agreement between perfect and practical diagnostics. It is also
physically consistent with the fact that the particles and tracers
from the practical experiments spread out approximately over this
center portion of the channel (see Fig. 10).

5.2. Vertical profile in the interior

The values of hD0yyi; hK
iso
eff i; hKPi and hKbi with Dy ¼ 1500 km are

all plotted in Fig. 13. (Kq was not plotted because it is quite sparse
and noisy in the deep ocean; however, it is very similar to KP .) Also
plotted are K1y from the Lagrangian experiment and KI from the
tracer experiment. There is fairly good agreement between the
diagnostics, excluding Kb. In particular, hD0yyi; hKeff i, and K1y show
very similar magnitudes and vertical structure, with a distinct peak
near 1000 m depth of approx. 4000 m2 s�1. hKPi is qualitatively
similar, with a sharp peak near the same depth, but its magnitude
or the perfect diagnostics, the meridional average was computed using (23) with a
average depth of the surface layer (280 m) is indicated by the gray shaded area.
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at the peak (5000 m2 s�1) is greater. Then it drops off steeply below
this peak. (KP is poorly resolved below 1000 m because it is com-
puted in isopycnal space; the deep is very weakly stratified, and
thus there are few layers defined there.) The profile of KI shows
a similar qualitative structure, but a slightly reduced magnitude
above 1000 m compared with the other diagnostics. In general,
there is more spread between diagnostics in the deep ocean. The
overall impression from this comparison is that, despite the wide
range of diagnostic methods and the ambiguities associated with
the averaging process, all these diagnostics are capturing the same
physical process of along-isopycnal mixing in the interior.

The vertical profile of Kb is clearly different from the other
quantities. As discussed clearly in SM09, the diffusivities of buoy-
ancy and potential vorticity cannot be the same when b is signifi-
cant, and when there is vertical variation in the diffusivity profile
(see Section 5.4 and (24) below). Nevertheless, the assumption that
these two quantities are equal continues to be made in eddy
parameterization schemes (for example Eden, 2010). Our results
essentially confirm the conclusions of SM09, who used a doubly-
periodic QG model, in a primitive-equation model with realistic
meridional variations in stratification and residual circulation. In
particular, our Fig. 13 agrees well with their Fig. 12. While the tra-
cer, particle, and PV diffusivities all have a mid-depth peak, Kb does
not; instead it varies only weakly in the vertical. Its magnitude is
less than half that of KP at the peak.

Since the perfect diagnostics were averaged only in the interior,
they do not show a secondary peak near the surface. This second-
ary peak is clearly visible in K1y, the particle diffusivity. The aver-
age depth of the surface diabatic layer is also shown in Fig. 13.
The secondary peak in K1y clearly occurs within this surface layer.
Since the surface is dynamically quite different from the interior,
we now focus on the surface specifically.
5.3. Comparison at the surface

Near the surface, eddies transition from isopycnal mixing to
horizontal mixing across the surface buoyancy gradient (Treguier
et al., 1997). This transition is visible in Fig. 2, which shows that
the mixing angle becoming flatter near the surface and no longer
aligns with the isopycnals. In Fig. 14, we plot D0yy;K

H
eff and Kb all

at 50 m depth, near the base of the mixed layer. Also plotted is a
single point representing K1y. At the surface, we do indeed find
better agreement between Kb and the other diagnostics. This is be-
cause the near-surface eddy buoyancy flux is truly down-gradient,
as opposed to the interior where it is purely skew. Nevertheless,
discrepancies remain, particularly near Y ¼ 1500 km. We speculate
that this is due to the differences in forcing and small-scale
Fig. 14. A comparison of D0yy;Keff and Kb at 50 m depth.
diffusivity among the three tracers. The tracer used to calculate
Keff was modeled with an explicit small-scale horizontal diffusion,
while the others were not. Furthermore, the buoyancy is subject to
an air-sea flux, which can strongly modulate the diffusivity. We
have not attempted to quantify this effect here, but an in-depth
treatment of the problem can be found in Shuckburgh et al. (2011).
5.4. Relation between isopyncal diffusivity and Gent–McWilliams
coefficient

In preceding sections, we showed good agreement between all
diagnostics of isopycnal mixing except for Kb, a.k.a. the skew diffu-
sivity of buoyancy, a.k.a. the Gent–McWilliams coefficient. This
would appear to be discouraging for the purposes of eddy param-
eterization, since most coarse-resolution models use some form of
the Gent and McWilliams (1990) closure, rather than one based on
potential vorticity, to represent the eddy-induced advection. The
dissimilarity between D0yy, i.e. the true isopycnal mixing rate, and
Kb, means that field experiments which aim to measure isopycnal
mixing will not yield a value that can be used as a Gent–McWil-
liams coefficient. However, the situation is not hopeless. Quasige-
ostrophic theory makes a prediction for the relationship between
these two quantities.

Simply using the definitions (14), (15), and (18), we can derive
the following relationship between Kq and Kb:

@

@z
ðKbsbÞ ¼ Kq

@sb

@z
� b

f

� �
: ð24Þ

(SM09). Note that this quantity has units m s�1 and is equivalent to
the [negative] QG-TEM eddy-induced velocity (see Treguier et al.,
1997). Only if b is negligible and @Kb=@z ¼ 0 does Kq ¼ Kb.

Eq. (24) is satisfied by definition for Kb and Kq. However, noting
the similarity between Kq and D0yy, we can ask whether it is also
satisfied if we replace Kq with D0yy on the RHS. Such a comparison
is made in Fig. 15. This figure also illustrates the error produced
by assuming Kb ¼ D0yy (i.e. neglecting the importance of the vertical
structure) and by neglecting b. We can see that using D0yy in place of
Kq in (24) satisfies the equality very well. The b term plays a rela-
tively minor role. In contrast, taking D0yy inside the z-derivative
causes a much larger disagreement. This indicates that the vertical
structure of D0yy is not negligible. Given the strong similarity be-
tween the vertical structure of D0yy found here and that reported
by Abernathey et al. (2010) for a highly realistic model of the
Southern Ocean, it is likely that this issue is relevant for the real
ACC.
Fig. 15. A test of (24) using D0yy in place of Kq . This illustrates the relationship
between the isopycnal mixing rate and the Gent–McWilliams coefficient. Various
approximate forms of the equation are also tested. The quantities were evaluated in
the center of the domain and were averaged over a meridional width of 200 km.
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We hope that this brief discussion will be noticed by those who
wish to translate experimental measurements of isopyncal mixing
(for instance, from the DIMES experiment) into values of the Gent–
McWilliams coefficient for ocean models. Given experimental
knowledge of D0yy, one could proceed by integrating (24) to obtain
Kb, subject to an appropriate boundary condition. We do not pur-
sue this further here, but it is an intriguing topic for future
investigation.
6. Conclusions

Our paper has not derived any fundamentally new methods;
rather, we have unified many different diagnostics of isopycnal
mixing and applied them to the same simulation, permitting a
side-by-side comparison. We have considered both ‘‘perfect’’ diag-
nostics, which can realistically only be applied to a numerical mod-
el, as well as ‘‘practical’’ diagnostics, which can potentially be
applied in field experiments. The results of this comparison are
mostly summarized by Fig. 13, which shows appropriately aver-
aged vertical profiles of isopycnal mixing rates as characterized
by different diagnostics.

The encouraging conclusion is that these different methods for
gauging isopycnal diffusivity produce good agreement. Despite dif-
ferences in forcing, background state, initial conditions, and grid-
scale diffusivity, we found mixing rates for passive tracers, QGPV,
and Ertel PV with similar magnitude and spatial structure. This
spatial structure includes higher mixing rates in the center of the
domain, where the eddies are stronger, and, more intriguingly, a
distinct mid-depth maximum in the vertical.

We have not gone into great detail on the explanation for this
structure, focusing instead on the details of the diagnostic methods
themselves; however, the structure is well understood. Most theo-
ries for turbulent diffusivity begin with the mixing-length concept
of Prandtl (1925) (see, among many, (Green, 1970; Stone, 1972;
Held and Larichev, 1996; Stammer, 1998; Smith et al., 2002;
Thompson and Young, 2007 [for applications to geostrophic turbu-
lence]). The recent literature contains a growing understanding of
the factors responsible for determining the isopycnal mixing rate
in the Southern Ocean, and in particular the mid-depth peak.
Beginning with Green (1970), linear quasigeostrophic analysis
has shown that the QGPV diffusivity must include a mid-depth
maximum in unstable eastward flows (see also Killworth, 1997)).
The work by Abernathey et al. (2010) showed that such a mid-
depth maxima did exist in a very realistic, eddy-permitting model
of the Southern Ocean and attributed its presence to a ‘‘critical
layer,’’ at which the eddy phase speed equaled the mean flow
speed. Further work by Ferrari and Nikurashin (2010) and Klocker
et al. (2012a); and Klocker et al., 2012b has confirmed this vertical
structure and moved towards a complete theoretical closure for
the mixing rates. In the theory of Ferrari and Nikurashin (2010),
the competing effects of eddy kinetic energy, eddy size, eddy phase
propagation, and zonal mean flow all contribute to the diffusivity.
The mid-depth peak was interpreted as a result of strong suppres-
sion of mixing by the mean flow at shallower depths.

Our results here, which show that isopycnal mixing rates are
consistent across a wide range of diagnostic methods, support
the notion that the diffusivity is a fundamental kinematic property
of the flow. We hope these results, obtained in a very simplified
model, will encourage the community to press on in the effort to
measure isopycnal mixing observationally, relate these measure-
ments to theoretical models (such as Ferrari and Nikurashin,
2010), and apply this understanding to improving coarse-resolu-
tion models. Indeed efforts are underway to translate the theoret-
ical concepts outlined above into a full-blown eddy closure scheme
for ocean models (Bates and Marshall, 2013, manuscript submitted
to J. Phys. Oceanogr.).

At the same time, our study indicates some potential pitfalls
that might be encountered in attempting to relate observations
of isopycnal mixing to diagnostics from numerical models and to
theoretical predictions. First of all, there are significant uncertain-
ties associated with practical mixing diagnostics. The errors associ-
ated with limited Lagrangian observations are discussed by Klocker
et al. (2012b). Here we have also addressed the errors associated
with limited isoypcnal tracer release experiments (Section 4.2).
Futhermore, there is the problem that both these practical diagnos-
tics involve a spreading-out over large horizontal areas, experienc-
ing different local mixing rates along the way. This spreading
means that the measured diffusivities are biased lower than the
peak diffusivity at the ACC core (Section 5.1). This smoothing effect
means that practical diagnostics are unlikely to be able to detect,
for instance, the fine-scale mixing barriers associated with the
multiple jets of the ACC (Thompson, 2010).

A final, crucial point is that the diffusivities measured by prac-
tical diagnostics can be used directly to estimate the eddy flux of
potential vorticity (either the lateral flux of QGPV or the isopycnal
flux of Ertel PV). But they can not be employed in a diffusive closure
to recover the meridional eddy buoyancy flux below the surface
layer in a diffusive buoyancy closure. This is because of the well-
known fact that the buoyancy flux is skew and is therefore not
directly related to the isopycnal diffusivity. In other words, the iso-
pycnal diffusivity is not the same as the Gent–McWilliams transfer
coefficient. Instead of being equal, the two quantities satisfy (24).
While much work remains to be done, we hope our study will help
to bridge the gap between observations of isopycnal mixing and
the problem of eddy parameterization.
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Appendix A. Errors in the multi-tracer method and D0zz

As discussed in detail by Bachman and Fox-Kemper (2013), the
multi-tracer method provides a least-squares estimate of the diffu-
sivity tensor K; the method is not exact, and is there is some misfit
remaining in the tracer flux that K cannot explain. The relative er-
rors associated with the method can be quantified by the
expression

En ¼
jFcn þKrcnj
jFcnj

; ðA:1Þ

which gives a component in the y and z directions. Histograms of
the relative error of each component are plotted in Fig. 16, including
all six tracers at every point in the ðy; zÞ plane (top panel). Evidently,
most of the errors are clustered in the bin closest to zero, represent-
ing an error of < 2:5%, but significant larger errors exist as well.
These errors make it difficult to estimate D0zz, the minor axis diffu-
sivity, with precision, because the errors are potentially much larger
than D0zz itself. Also shown in Fig. 16 is the buoyancy flux error

Eb ¼
jFb þKrbj
jFbj

; ðA:2Þ

which characterizes the accuracy of K for reconstructing the eddy
buoyancy flux. (Recall that buoyancy was not used in the inversion
for K.) In contrast to Bachman and Fox-Kemper (2013), we find
substantially larger errors. This indicates that there are some subtle



0

Fig. 16. (top) Histogram of errors E as defined in (A.1), showing the accuracy of K in reconstructing the passive tracer fluxes. The meridional flux is on the left and the vertical
flux is on the right. (bottom) The same error estimate for buoyancy fluxes.

14 R. Abernathey et al. / Ocean Modelling 72 (2013) 1–16
differences in the way buoyancy is transported by eddies compared
with the passive tracers. One potential explanation for this is the
fact that buoyancy is in a statistical steady state, with forcing at
the surface and within the sponge layer, while the tracers experi-
ence a transient mixing process.

To illustrate a consequence of the errors in K, consider the for-
mula for D0zz in the limit of small mixing angle a : D0zz ’ Dzz�
D2

yz=Dyy. Typical values of the components of D are
Dyy ¼ 5000 m2 s�1;Dyz ¼ �5 m2 s�1, and Dzz ¼ 5� 10�3 m2 s�1, giv-
ing D0zz ¼ 0. Departures from 0 are due to imperfect cancellation
between the two terms. As discussed above, the magnitude of
the error in K varies in space and with tracer, but for a rough esti-
mate, let us assume 5 % for each term. This implies that
D0zz ¼ 0� 6� 10�4 m2 s�1.

The numerical model has been constructed to be nearly adia-
batic by minimizing the amount of spurious numerical diffusion
in the interior. An entire study was devoted to rigorously evaluat-
ing the diapycnal diffusion, using both the buoyancy probability-
density distribution and passive-tracer based methods (Hill et al.,
2012). This study concluded that the model’s effective diapycnal
diffusivity was less than 10�5 m2 s�1, nearly two orders of magni-
tude less than the error bounds we estimated for D0zz.

We now examine Fig. 17, which plots Dzz;�D2
yz=Dyy, and D0zz. This

figure shows that D0zz is indeed the residual of two much larger
terms whose mutual cancellation determines the value of D0zz.
The magnitude of D0zz is between 10�4 and 10�3 m2 s�1. Given the
Fig. 17. The terms of the tensor D relevant for estimating D0zz . The third panel is appro
previous results cited above, it seems unlikely that this represents
a true diapycnal eddy diffusivity. Rather, it arises both due to the
small errors inherent in K and from time dependence of the tracer
concentrations. As shown definitively by Hill et al. (2012), buoy-
ancy is subjected to a much smaller rate of diapycnal diffusion than
is suggested by D0zz, which seems to suggest that D0zz is not a very
meaningful quantity here. Certainly it does not contribute strongly
to the tracer transport.

On the other hand, D0yy ’ Dyy, with no cancellation between
large competing terms. This means that the errors of 1–5 % in K

shown in Fig. 16 apply in a straightforward way to D0yy.
Appendix B. Tracer release experiments

As discussed in Hill et al. (2012), mimicking tracer release
experiments in an ocean model can be problematic. One wants
the initial tracer distribution to be as compact as possible (to be
close to an isopycnal) but not too small compared to the grid scale.
Also, the initial distribution has to be small enough, relative to the
domain, to leave ample time before the tracer is transported into
the surface mixed layer or north/south boundaries.

As a compromise (following Hill et al. (2012)), the tracer field is
initialized with a 3D Gaussian shape with 50 m vertical and 5 km
horizontal half-width. The tracer has a maximum value of one.
We carried out 16 releases at 11 depths (shown by the open circles
in Fig. 11). Each set of 16 releases consists of eight releases, 125 km
ximately given by the sum of the first two panels. Note the different color scales.
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Fig. 18. Time evolution of r2 (in m2) for each individual tracer release experiment
(dashed lines) and for the 16-member ensemble (thick solid line) at 1200 m depth.
Linear growth with time signifies a constant diffusivity.
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apart along the central axis of the channel followed by a second set
of eight 300 days later. The 3D tracer distributions are sampled
every 10 days for 300 days. In order to calculate the isopycnal dif-
fusivity, all vertical profiles are first plotted around a relative ver-
tical coordinate centered on the target temperature of the release
and then integrated vertically and zonally to produce a meridional
profile. A Gaussian curve is fitted to the reconstructed meridional
profile (from a single tracer or averaged from an ensemble of pro-
files, see examples in Fig. 10,, bottom panels). The best-fit half-
width ryðtÞ relates to the effective diffusivity through:

K I ¼
1
2

dr2
y

dt
: ðB:1Þ

Fig. 18 illustrates the time evolution of ryðtÞ for a few single
tracers (dashed lines) and for the 16-member ensemble mean
(thick solid) for releases at 1200 m depth. The initial behavior of
sigma is rather erratic for individual tracers, but often approach a
linear tendency after 150 days. The ensemble mean value is very
nearly linear from the tracer release onward. Note that this is not
true at all depths—in some cases the ensemble mean value only
settles down into a linear trend after a 100 days. For consistency,
all isopycnal diffusivities shown here are obtained by a best linear
fit of r2ðtÞ between 1500 and 300 days.

Although ryðtÞ from individual tracers exhibits rather similar
trends after �150 days, the differences in slopes are sufficient to
result in large uncertainties on KI , as much as �1500 m2 s�1 at
1200 m.
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