616 research outputs found

    Processes determining heat waves across different European climates

    Get PDF
    This study presents a comprehensive analysis of processes determining heat waves across different climates in Europe for the period 1979–2016. Heat waves are defined using a percentile‐based index and the main processes quantified along trajectories are adiabatic compression by subsidence and local and remote diabatic processes in the upper and lower troposphere. This Lagrangian analysis is complemented by an Eulerian calculation of horizontal temperature advection. During typical summers in Europe, one or two heat waves occur, with an average duration of five days. Whereas high near‐surface temperatures over Scandinavia are accompanied by omega‐like blocking structures at 500 hPa, heat waves over the Mediterranean are connected to comparably flat ridges. Tracing air masses backwards from the heat waves, we identify three trajectory clusters with coherent thermodynamic characteristics, vertical motions, and geographic origins. In all regions, horizontal temperature advection is almost negligible. In two of the three clusters, subsidence in the free atmosphere is very important in establishing high temperatures near the surface, while the air masses in the third cluster are warmed primarily due to diabatic heating near the surface. Large interregional differences occur between the British Isles and western Russia. Over the latter region, near‐surface transport and diabatic heating appear to be very important in determining the intensity of the heat waves, whereas subsidence and adiabatic warming are of first‐order importance for the British Isles. Although the large‐scale pattern is quasistationary during heat wave days, new air masses are entrained steadily into the lower troposphere during the life cycle of a heat wave. Overall, the results of the present study provide a guideline as to which processes and diagnostics weather and climate studies should focus on to understand the severity of heat waves

    A systematic comparison of tropical waves over northern Africa. Part II: Dynamics and thermodynamics

    Get PDF
    This study presents the first systematic comparison of the (thermo-)dynamics associated with all major tropical wave types causing rainfall modulation over northern tropical Africa: Madden Julian Oscillation (MJO), Equatorial Rossby waves (ERs), mixed Rossby-gravity waves (MRGs), Kelvin waves, tropical disturbances (TDs, including African Easterly Waves), and eastward inertio-gravity waves (EIGs). Reanalysis and radiosonde data were analyzed for the period 1981--2013 based on space-time filtering of outgoing longwave radiation. The identified circulation patterns are largely consistent with theory. The slow modes, MJO and ER, mainly impact precipitable water, whereas the faster Kelvin waves, MRGs, and TDs primarily modulate moisture convergence. Monsoonal inflow intensifies during wet phases of the MJO, ERs, and MRGs, associated with a northward shift of the intertropical discontinuity for MJO and ERs. During passages of vertically tilted imbalanced wave modes, such as MJO, Kelvin waves, and TDs, and partly MRGs, increased vertical wind shear and improved conditions for up- and downdrafts facilitate the organization of convection. The balanced ERs are not tilted and rainfall is triggered by large-scale moistening and stratiform lifting. The MJO and ERs interact with intraseasonal variations of the Indian monsoon and extratropical Rossby wave trains. The latter causes a trough over the Atlas Mountains associated with a tropical plume and rainfall over the Sahara. Positive North Atlantic and Arctic Oscillation signals precede tropical plumes in case of the MJO. The results unveil which dynamical processes need to be modeled realistically to represent the coupling between tropical waves and rainfall in northern tropical Africa.Comment: 33 pages, 11 figures, supplementary material; submitted to Journal of Climat

    A Systematic Comparison of Tropical Waves over Northern Africa. Part II: Dynamics and Thermodynamics

    Get PDF
    This study presents the first systematic comparison of the dynamics and thermodynamics associated with all major tropical wave types causing rainfall modulation over northern tropical Africa: the Madden–Julian oscillation (MJO), equatorial Rossby waves (ERs), tropical disturbances (TDs, including African easterly waves), Kelvin waves, mixed Rossby–gravity waves (MRGs), and eastward inertio-gravity waves (EIGs). Reanalysis and radiosonde data were analyzed for the period 1981–2013 based on space–time filtering of outgoing longwave radiation. The identified circulation patterns are largely consistent with theory. The slow modes, MJO and ER, mainly impact precipitable water, whereas the faster TDs, Kelvin waves, and MRGs primarily modulate moisture convergence. Monsoonal inflow intensifies during wet phases of the MJO, ERs, and MRGs, associated with a northward shift of the intertropical discontinuity for MJO and ERs. This study reveals that MRGs over Africa have a distinct dynamical structure that differs significantly from AEWs. During passages of vertically tilted imbalanced wave modes, such as the MJO, TDs, Kelvin waves, and partly MRG waves, increased vertical wind shear and improved conditions for up- and downdrafts facilitate the organization of mesoscale convective systems. The balanced ERs are not tilted, and rainfall is triggered by large-scale moistening and stratiform lifting. The MJO and ERs interact with intraseasonal variations of the Indian monsoon and extratropical Rossby wave trains. The latter causes a trough over the Atlas Mountains associated with a tropical plume and rainfall over the Sahara. The presented results unveil which dynamical processes need to be modeled realistically to represent the coupling between tropical waves and rainfall in northern tropical Afric

    A systematic comparison of tropical waves over northern Africa. Part I: Influence on rainfall

    Get PDF
    Low-latitude rainfall variability on the daily to intraseasonal timescale is often related to tropical waves, including convectively coupled equatorial waves, the Madden-Julian Oscillation (MJO), and tropical disturbances. Despite the importance of rainfall variability for vulnerable societies in tropical Africa, the relative influence of tropical waves for this region is largely unknown. This article presents the first systematic comparison of the impact of six wave types on precipitation over northern tropical Africa during the transition and full monsoon seasons, using two satellite products and a dense rain gauge network. Composites of rainfall anomalies in the different datasets show} comparable modulation intensities in the West Sahel and at the Guinea Coast, varying from less than 2 to above 7 mm/d depending on the wave type. African Easterly Waves (AEWs) and Kelvin waves dominate the 3-hourly to daily timescale and explain 10-30% locally. On longer timescales (7-20d), only the MJO and equatorial Rossby (ER) waves remain as modulating factors and explain about up to one third of rainfall variability. Eastward inertio-gravity waves and mixed Rossby-gravity (MRG) waves are comparatively unimportant. An analysis of wave superposition shows that low-frequency waves (MJO, ER) in their wet phase amplify the activity of high-frequency waves (TD, MRG) and suppress them in the dry phase. The results stress that more attention should be paid to tropical waves when forecasting rainfall over northern tropical Africa.Comment: 34 pages, 12 figures, supplementary material; submitted to Journal of Climat

    Large-scale Rossby wave and synoptic-scale dynamic analyses of the unusually late 2016 heatwave over Europe

    Get PDF
    This paper analyses the late summer heatwave over Europe in 2016. Central, western and southwestern Europe were primarily affected by the high temperatures. Seville, Spain, for example, experienced the highest September temperature on record on 5 September 2016, reaching a maximum of 44.8°C, and temperatures in Trier, Germany reached 34.2°C on 13 September 2016. The heatwave was marked by three distinct peaks, accompanied by record‐breaking values for 500hPa geopotential heights and, to a lesser extent, 850hPa temperatures. These peaks were associated with the arrival of high‐amplitude Rossby wave packets in western Europe. The latter originated several days before the event over western North America. During the three peaks of the heatwave, subsidence and the ensuing adiabatic compression in the free atmosphere in combination with boundary layer processes, rather than local temperature advection, were instrumental in the occurrence of the extreme temperature episodes

    A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe

    Get PDF
    This study presents a Lagrangian analysis of upper-tropospheric anticyclones that are connected to surface heat waves in different European regions for the period 1979 to 2016. In order to elucidate the formation of these anticyclones and the role of diabatic processes, we trace air parcels backwards from the upper-tropospheric anticyclones and quantify the diabatic heating in these air parcels. Around 25 %–45 % of the air parcels are diabatically heated during the last 3 d prior to their arrival in the upper-tropospheric anticyclones, and this amount increases to 35 %–50 % for the last 7 d. The influence of diabatic heating is larger for heat-wave-related anticyclones in northern Europe and western Russia and smaller in southern Europe. Interestingly, the diabatic heating occurs in two geographically separated air streams; 3 d prior to arrival, one heating branch (remote branch) is located above the western North Atlantic, and the other heating branch (nearby branch) is located over northwestern Africa and Europe to the southwest of the target upper-tropospheric anticyclone. The diabatic heating in the remote branch is related to warm conveyor belts in North Atlantic cyclones upstream of the evolving upper-level ridge. In contrast, the nearby branch is diabatically heated by convection, as indicated by elevated mixed-layer convective available potential energy along the western side of the matured upper-level ridge. Most European regions are influenced by both branches, whereas western Russia is predominantly affected by the nearby branch. The remote branch predominantly affects the formation of the upper-tropospheric anticyclone, and therefore of the heat wave, whereas the nearby branch is more active during its maintenance. For long-lasting heat waves, the remote branch regenerates. The results from this study show that the dynamical processes leading to heat waves may be sensitive to small-scale microphysical and convective processes, whose accurate representation in models is thus supposed to be crucial for heat wave predictions on weather and climate timescales

    Statistical forecasts for the occurrence of precipitation outperform global models over northern Tropical Africa

    Get PDF
    Short‐term global ensemble predictions of rainfall currently have no skill over northern tropical Africa when compared to simple climatology‐based forecasts, even after sophisticated statistical postprocessing. Here, we demonstrate that 1‐day statistical forecasts for the probability of precipitation occurrence based on a simple logistic regression model have considerable potential for improvement. The new approach we present here relies on gridded rainfall estimates from the Tropical Rainfall Measuring Mission for July‐September 1998–2017 and uses rainfall amounts from the pixels that show the highest positive and negative correlations on the previous two days as input. Forecasts using this model are reliable and have a higher resolution and better skill than climatology‐based forecasts. The good performance is related to westward propagating African easterly waves and embedded mesoscale convective systems. The statistical model is outmatched by the postprocessed dynamical forecast in the dry outer tropics only, where extratropical influences are important.Plain Language Summary: Forecasts of precipitation for the next few days based on state‐of‐the‐art weather models are currently inaccurate over northern tropical Africa, even after systematic forecast errors are corrected statistically. In this paper, we show that we can use rainfall observations from the previous 2 days to improve 1‐day predictions of precipitation occurrence. Such an approach works well over this region, as rainfall systems tend to travel from the east to the west organized by flow patterns several kilometers above the ground, called African easterly waves. This statistical forecast model requires training over a longer time period (here 19 years) to establish robust relationships on which future predictions can be based. The input data employed are gridded rainfall estimates based on satellite data for the African summer monsoon in July to September. The new method outperforms all other methods currently available on a day‐to‐day basis over the region, except for the dry outer tropics, where influences from midlatitudes, which are better captured by weather models, become more important.Key Points: Raw and statistically postprocessed global ensemble forecasts fail to predict West African rainfall occurrence. A logistic regression model using observations from preceding days outperforms all other types of forecasts. The skill of the statistical model is mainly related to propagating African easterly waves and mesoscale convective systems.Deutsche ForschungsgemeinschaftKlaus Tschira Stiftun
    corecore