10 research outputs found

    Physical Exercise Promotes DNase Activity Enhancing the Capacity to Degrade Neutrophil Extracellular Traps

    No full text
    (1) Background: An unhealthy lifestyle is a significant contributor to the development of chronic diseases. Physical activity can benefit primary and secondary prevention. Higher DNase activity is associated with favourable outcomes after cardiovascular (CV) events. In this study, we aimed to investigate the influence of consequent endurance exercise on DNase activity. (2) Methods: 98 subjects with at least one CV risk factor but the physical ability to perform endurance training were included. Individuals performed a bicycle stress test at the beginning and after 8 months to assess physical performance. In between, all participants were instructed to engage in guideline-directed physical activity. Blood samples were drawn in two-month intervals to assess routine laboratory parameters, cell-free DNA (cfDNA), and DNase activity. (3) Results: Prevailing CV risk factors were overweight (65.9%), a positive family history (44.9%), hypertension (32.7%) and smoking (20.4%). Performance changed by 7.8 ± 9.1% after 8 months. Comparison of baseline to 8 months revealed a decrease in cfDNA and an increase in DNase activity. This effect was driven by participants who achieved a performance gain. (4) Conclusions: Regular physical activity might improve CV health by increasing DNase activity and thereby, the capacity to lower pro-inflammatory signalling, complementing measures of primary and secondary prevention

    Novel Conserved Group A Streptococcal Proteins Identified by the Antigenome Technology as Vaccine Candidates for a Non-M Protein-Based Vaccine ▿

    No full text
    Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes

    Avemar, a nontoxic fermented wheat germ extract, attenuates the growth of sensitive and 5-FdUrd/Ara-C cross-resistant H9 human lymphoma cells through induction of apoptosis

    No full text
    Avemar (MSC) is a nontoxic fermented wheat germ extract, which has been shown to significantly improve the survival rate in patients suffering from various malignancies. We investigated its effects in sensitive and 5-FdUrd/Ara-C cross-resistant H9 human lymphoma cells. After 48 and 72 h of incubation, Avemar inhibited the growth of sensitive H9 cells with IC50 values of 290 and 200 µg/ml, whereas the growth of 5-FdUrd/Ara-C cross-resistant H9 cells was attenuated with IC50 values of 180 and 145 µg/ml, respectively. Treatment with 300 µg/ml MSC for 48 h caused dose-dependent induction of apoptosis in 48% of sensitive H9 cells. In cross-resistant H9 cells, incubation with 200 µg/ml Avemar for 48 h led to 41% of apoptotic tumor cells. Growth arrest of sensitive H9 cells after exposure to various concentrations of MSC occurred mainly in the S phase of the cell cycle, thereby increasing the cell population from 54 to 73% while depleting cells in the G0-G1 phase from 40 to 19%. Growth arrest in cross-resistant H9 cells occurred also mainly in the S phase, increasing the cell population from 45 to 68% while depleting cells in the G0-G1 phase from 45 to 31%. As MSC treatment likely overcomes 5-FdUrd/Ara-C resistance, further investigations to elucidate the exact mechanisms are warranted. We conclude that Avemar exerts a number of beneficial effects which could support conventional chemotherapy of human malignancies
    corecore