47 research outputs found

    Re-thinking resuscitation: Leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach

    Get PDF
    Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints

    Fulminant systemic capillary leak syndrome due to C1 inhibitor deficiency complicating acute dermatomyositis: a case report

    Get PDF
    INTRODUCTION: Dermatomyositis is a chronic inflammatory disorder characterized by muscular and dermatologic symptoms with variable internal organ involvement. This is the first report on a patient with acute dermatomyositis and fulminant systemic capillary leak syndrome. CASE PRESENTATION: A 69-year-old Caucasian woman with chronic dermatomyositis presented with clinical signs of severe hypovolemic shock and pronounced hemoconcentration (hematocrit, 69%). Her colloid osmotic pressure was 4.6mmHg. Following a bolus dose of prednisolone (500mg), fluid resuscitation was initiated. During volume loading, anasarca and acute respiratory distress rapidly developed. Echocardiography revealed an underfilled, hypokinetic, diastolic dysfunctional left ventricle with pericardial effusion but no signs of tamponade. Despite continued fluid resuscitation and high-dosed catecholamine therapy, the patient died from refractory shock 12 hours after intensive care unit admission. A laboratory analysis of her complement system suggested the presence of C1 inhibitor deficiency as the cause for systemic capillary leakage. The post-mortem examination revealed bilateral pleural, pericardial and peritoneal effusions as well as left ventricular hypertrophy with patchy myocardial fibrosis. Different patterns of endomysial/perimysial lymphocytic infiltrations adjacent to degenerated cardiomyocytes in her myocardium and necrotic muscle fibers in her right psoas major muscle were found in the histological examination. CONCLUSIONS: This case report indicates that acute exacerbation of chronic dermatomyositis can result in a fulminant systemic capillary leak syndrome with intense hemoconcentration, hypovolemic shock and acute heart failure. In the presented patient, the cause for diffuse capillary leakage was most probably acquired angioedema, a condition that has been associated with both lymphoproliferative and autoimmunologic disorders

    Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation

    Get PDF
    A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer- ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs

    Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach

    Get PDF
    Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints

    A Nationwide Census of ICU Capacity and Admissions in Mongolia

    No full text
    <div><p>In Mongolia, a Central Asian lower-middle income country, intensive care medicine is an under-resourced and–developed medical specialty. The burden of critical illness and capacity of intensive care unit (ICU) services in the country is unknown. In this nationwide census, we collected data on adult and pediatric/neonatal ICU capacities and the number of ICU admissions in 2014. All hospitals registered to run an ICU service in Mongolia were surveyed. Data on the availability of an adult and/or pediatric/neonatal ICU service, the number of available ICU beds, the number of available functional mechanical ventilators, the number of patients admitted to the ICU, and the number of patients admitted to the study hospital were collected. In total, 70 ICUs with 349 ICU beds were counted in Mongolia (11.7 ICU beds/100,000 inhabitants; 1.7 ICU beds/100 hospital beds). Of these, 241 (69%) were adult and 108 (31%) pediatric/neonatal ICU beds. Functional mechanical ventilators were available for approximately half of the ICU beds (5.1 mechanical ventilators/100,000 inhabitants). While all provincial hospitals ran a pediatric/neonatal ICU, only dedicated pediatric hospitals in Ulaanbaatar did so. The number of adult and pediatric/neonatal ICU admissions varied between provinces. The number of adult ICU beds and adult ICU admissions per 100,000 inhabitants correlated (<i>r</i> = 0.5; <i>p</i> = 0.02), while the number of pediatric/neonatal ICU beds and pediatric/neonatal ICU admissions per 100,000 inhabitants did not (<i>r</i> = 0.25; <i>p</i> = 0.26). In conclusion, with 11.7 ICU beds per 100,000 inhabitants the ICU capacity in Mongolia is higher than in other low- and lower-middle-income countries. Substantial heterogeneities in the standardized ICU capacity and ICU admissions exist between Mongolian provinces. Functional mechanical ventilators are available for only half of the ICU beds. Pediatric/neonatal ICU beds make up one third of the national ICU capacity and appear to meet or even exceed the demand of pediatric/neonatal critical care.</p></div
    corecore