2,219 research outputs found

    Theoretical study of impurity-induced magnetism in FeSe

    Get PDF
    Experimental evidence suggests that FeSe is close to a magnetic instability, and recent scanning tunneling microscopy (STM) measurements on FeSe multilayer films have revealed stripe order locally pinned near defect sites. Motivated by these findings, we perform a theoretical study of locally induced magnetic order near nonmagnetic impurities in a model relevant for FeSe. We find that relatively weak repulsive impurities indeed are capable of generating short-range magnetism, and explain the driving mechanism for the local order by resonant eg-orbital states. In addition, we investigate the importance of orbital-selective self-energy effects relevant for Hund's metals, and show how the structure of the induced magnetization cloud gets modified by orbital selectivity. Finally, we make concrete connection to STM measurements of iron-based superconductors by symmetry arguments of the induced magnetic order, and the basic properties of the Fe Wannier functions relevant for tunneling spectroscopy.Comment: 10 pages, 4 figure

    A photonic crystal fiber with zero dispersion at 1064 nm

    Get PDF

    Study of the educational and service facilities in the Providence junior high schools in comparison with accepted standards

    Full text link
    Thesis (M.A.)--Boston University, 1933. This item was digitized by the Internet Archive

    Universality of scanning tunneling microscopy in cuprate superconductors

    Full text link
    We consider the problem of local tunneling into cuprate superconductors, combining model based calculations for the superconducting order parameter with wavefunction information obtained from first principles electronic structure. For some time it has been proposed that scanning tunneling microscopy (STM) spectra do not reflect the properties of the superconducting layer in the CuO2_2 plane directly beneath the STM tip, but rather a weighted sum of spatially proximate states determined by the details of the tunneling process. These "filter" ideas have been countered with the argument that similar conductance patterns have been seen around impurities and charge ordered states in systems with atomically quite different barrier layers. Here we use a recently developed Wannier function based method to calculate topographies, spectra, conductance maps and normalized conductance maps close to impurities. We find that it is the local planar Cu dx2−y2d_{x^2-y^2} Wannier function, qualitatively similar for many systems, that controls the form of the tunneling spectrum and the spatial patterns near perturbations. We explain how, despite the fact that STM observables depend on the materials-specific details of the tunneling process and setup parameters, there is an overall universality in the qualitative features of conductance spectra. In particular, we discuss why STM results on Bi2_2Sr2_2CaCu2_2O8_8 and Ca2−x_{2-x}Nax_xCuO2_2Cl2_2 are essentially identical

    Robustness of Quasiparticle Interference Test for Sign-changing Gaps in Multiband Superconductors

    Full text link
    Recently, a test for a sign-changing gap function in a candidate multiband unconventional superconductor involving quasiparticle interference data was proposed. The test was based on the antisymmetric, Fourier transformed conductance maps integrated over a range of momenta q\bf q corresponding to interband processes, which was argued to display a particular resonant form, provided the gaps changed sign between the Fermi surface sheets connected by q\bf q. The calculation was performed for a single impurity, however, raising the question of how robust this measure is as a test of sign-changing pairing in a realistic system with many impurities. Here we reproduce the results of the previous work within a model with two distinct Fermi surface sheets, and show explicitly that the previous result, while exact for a single nonmagnetic scatterer and also in the limit of a dense set of random impurities, can be difficult to implement for a few dilute impurities. In this case, however, appropriate isolation of a single impurity is sufficient to recover the expected result, allowing a robust statement about the gap signs to be made.Comment: 9 pages, 12 figure

    Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria

    Full text link
    We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by non-equilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster size distribution, with an exponent 0.88±0.070.88\pm0.07, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion of bacteria and the rod-shape of bacteria is sufficient to induce collective motion
    • …
    corecore