We characterize cell motion in experiments and show that the transition to
collective motion in colonies of gliding bacterial cells confined to a
monolayer appears through the organization of cells into larger moving
clusters. Collective motion by non-equilibrium cluster formation is detected
for a critical cell packing fraction around 17%. This transition is
characterized by a scale-free power-law cluster size distribution, with an
exponent 0.88±0.07, and the appearance of giant number fluctuations. Our
findings are in quantitative agreement with simulations of self-propelled rods.
This suggests that the interplay of self-propulsion of bacteria and the
rod-shape of bacteria is sufficient to induce collective motion