7 research outputs found

    Suicide-Gene-Modified Extracellular Vesicles of Human Primary Uveal Melanoma in Future Therapies

    No full text
    Extracellular vesicles secreted from uveal melanoma (UM) cells are involved in the establishment of the premetastatic niche and display transforming potential for the formation of metastases, preferentially in the liver. In this study, we cultivated human primary UM cells and uveal melanoma-associated fibroblasts in vitro to be transduced by infection with a retrovirus containing the suicide gene—fused yeast cytosine deaminase::uracil phospho-ribosyl transferase (yCD::UPRT). A homogenous population of yCD::UPRT-UM cells with the integrated provirus expressed the gene, and we found it to continuously secrete small extracellular vesicles (sEVs) possessing mRNA of the suicide gene. The yCD::UPRT-UM-sEVs were internalized by tumor cells to the intracellular conversion of the prodrug 5-fluorocytosine (5-FC) to the cytotoxic drug 5-fluorouracil (5-FU). The host range of the yCD::UPRT-UM-sEVs was not limited to UMs only. The yCD::UPRT-UM-sEVs inhibited the growth of the human cutaneous melanoma cell line A375 and uveal melanoma cell line MP38, as well as other primary UMs, to various extents in vitro. The yCD::UPRT-UM-sEVs hold the therapeutic and prophylactic potential to become a therapeutic drug for UM. However, the use of yCD::UPRT-UM-sEVs must first be tested in animal preclinical studies

    Crossed cerebellar diaschisis after stroke: can perfusion-weighted MRI show functional inactivation?

    No full text
    In this study, we aimed to assess the detection of crossed cerebellar diaschisis (CCD) following stroke by perfusion-weighted magnetic resonance imaging (PW-MRI) in comparison with positron emission tomography (PET). Both PW-MRI and 15O-water-PET were performed in acute and subacute hemispheric stroke patients. The degree of CCD was defined by regions of interest placed in the cerebellar hemispheres ipsilateral (I) and contralateral (C) to the supratentorial lesion. An asymmetry index (AI=C/I) was calculated for PET-cerebral blood flow (CBF) and MRI-based maps of CBF, cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). The resulting AI values were compared by Bland–Altman (BA) plots and receiver operating characteristic analysis to detect the degree and presence of CCD. A total of 26 imaging procedures were performed (median age 57 years, 20/26 imaged within 48 hours after stroke). In BA plots, all four PW-MRI maps could not reliably reflect the degree of CCD. In receiver operating characteristic analysis for detection of CCD, PW-CBF performed poorly (accuracy 0.61), whereas CBV, MTT, and TTP failed (accuracy <0.60). On the basis of our findings, PW-MRI at 1.5 T is not suited to depict CCD after stroke

    Literaturverzeichnis

    No full text

    Bibliographie

    No full text
    corecore