39 research outputs found

    Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 31 (2011): 9858-9868, doi:10.1523/JNEUROSCI.0560-11.2011.Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2–18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.This work was supported by NIH Grants T32 AG020506-07 (N.M.K.); AG09466 (L.I.B.); and NS23868, NS23320, and NS41170 (S.T.B.); as well as 2007/2008 MBL Summer Research Fellowships and an ALS/CVS Therapy Alliance grant (G.M.)

    Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density

    Get PDF
    The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L–null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H–null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons

    C6 pyridinium ceramide influences alternative pre-mRNA splicing by inhibiting protein phosphatase-1

    Get PDF
    Alternative pre-mRNA processing is a central element of eukaryotic gene regulation. The cell frequently alters the use of alternative exons in response to physiological stimuli. Ceramides are lipid-signaling molecules composed of sphingosine and a fatty acid. Previously, water-insoluble ceramides were shown to change alternative splicing and decrease SR-protein phosphorylation by activating protein phosphatase-1 (PP1). To gain further mechanistical insight into ceramide-mediated alternative splicing, we analyzed the effect of C6 pyridinium ceramide (PyrCer) on alternative splice site selection. PyrCer is a water-soluble ceramide analog that is under investigation as a cancer drug. We found that PyrCer binds to the PP1 catalytic subunit and inhibits the dephosphorylation of several splicing regulatory proteins containing the evolutionarily conserved RVxF PP1-binding motif (including PSF/SFPQ, Tra2-beta1 and SF2/ASF). In contrast to natural ceramides, PyrCer promotes phosphorylation of splicing factors. Exons that are regulated by PyrCer have in common suboptimal splice sites, are unusually short and share two 4-nt motifs, GAAR and CAAG. They are dependent on PSF/SFPQ, whose phosphorylation is regulated by PyrCer. Our results indicate that lipids can influence pre-mRNA processing by regulating the phosphorylation status of specific regulatory factors, which is mediated by protein phosphatase activity

    Tau Splicing and the Intricacies of Dementia

    No full text
    Tau is a microtubule-associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its localization, conformation, and post-translational modifications and hence its availability and affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases, which lead to dementia. In this review, I present our cumulative knowledge of tau splicing regulation in connection with neurodegeneration and also briefly go over the still-extensive list of questions that are connected to tau (dys)function. J. Cell. Physiol. 227: 1220-1225, 2012. (c) 2011 Wiley Periodicals, Inc

    The tempting illusion of genetic virtue

    No full text
    Mark Walker has put forth a proposal which he calls the Genetic Virtue Program or GVP,1 whose kernel is that it is both possible and desirable to improve virtue by pre-implantation selection or in utero engineering. Walker lists caveats to his thesis, although he consistently implies that their validity is doubtful by stating at each instance that he is including them “merely for the sake of completeness.

    Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases

    Get PDF
    Organization of cytoskeletal elements is critical for cellular migration and maintenance of morphology. Tau protein, which binds to and organizes microtubules, is instrumental in forming and maintaining the neuronal axon. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of pathological tau structures (neurofibrillary tangles, NFTs) found in brains of dementia sufferers. Null tau mice, although viable, exhibit developmental and cognitive defects and transgenic mice which overexpress tau develop severe neuropathies. The neuron-specific tau transcript produces multiple isoforms by intricately regulated alternative splicing. These isoforms modulate tau function in normal brain. Moreover, aberrations in tau splicing regulation directly cause several neurodegenerative diseases. Thus, tau splicing regulation is vital to neuronal health and correct brain function. This review briefly presents our cumulative knowledge of tau splicing-cis elements and trans factors which influence it at the RNA level, its effect on the structure and roles of the tau protein and its repercussions on neuronal morphology and neurodegeneration

    The tempting illusion of genetic virtue

    No full text

    Transcriptional regulation of the mouse microtubule-associated protein tau

    No full text
    The microtubule-associated protein (MAP) tau is found primarily in neurons and errors in its regulation are associated with Alzheimer\u27s disease and other neurodegenerative disorders. Tau expression is transcriptionally regulated and tissue-specific. In this study, starting with a approximately 7500-bp fragment from the mouse tau gene, which includes tau exon -1, we define regions preferentially conferring tissue-specific expression. Furthermore, gel shift assays indicate that transcriptional regulators SP-1 and AP-2 are important for basal expression but not necessary for neuron-specific expression of the tau transcript

    Tau exon 6 is regulated by an intricate interplay of trans factors and cis elements, including multiple branch points

    No full text
    Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 6 of the gene is an alternatively spliced cassette whose expression profile differs from that of the other tau regulated exons, implying the involvement of distinct regulatory factors. Previous work had established the existence and use of two additional 3\u27 splice sites within exon 6 and the influence of splicing factors polypyrimidine binding protein (PTB) and U2AF on its splicing. The present work shows that exon 6 isoforms exist in distinct ratios in different compartments of the nervous system and that splicing of exon 6 is governed by multiple branch points, exonic cis elements and additional trans factors. Recent results show that tau exon 6 is specifically suppressed in the brains of people who suffer from myotonic dystrophy type 1. The understanding of how tau exon 6 splicing is regulated may give us insights into the disease
    corecore