14 research outputs found

    Eye fluke infection changes diet composition in juvenile European perch (Perca fluviatilis)

    Get PDF
    Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake MĂĽggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.Leibniz-AssociationPeer Reviewe

    Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo

    No full text
    Cyanobacterial water blooms became a global problem/issue because beside a dramatic deterioration of water quality parameters they also produce cyanobacterial toxins being harmful for animals and humans. Cyanotoxins especially the most prominent one, microcystin-LR (MC-LR), are of major concern and they have been reported to cause even death of mammals following ingestion or ingurgitation due to hepatotoxic modes of action. The aim of the recent study is to summarize briefly the impacts of microcystin on laboratory rodents, mice and rats, being used as models for other mammals including human beings. Most experimental approaches used intraperitoneal rather than oral and intratracheal application of microcystins, especially MC-LR, being the most efficient way to induce adverse impacts on different target organs. However, no matter how the exposure of rodents was performed, microcystins induced severe harmful impacts on the different target organs, preferentially the liver, for instances hemorrhages and apoptosis in liver, liver tumours, adverse effects on gut, kidney, testis and epididymis including spermatogenesis, on lung, on serum parameters and on progeny. In addition to these histological findings, microcystin was found to affect specifically biochemical parameters of target organs such as enzymes e.g. GST, CAT, GR, GPX, SOD, AST, ALT, Îł-GT, protein phosphatases, SDH, SoDH and LDH or stress proteins such as HSP-70 and further parameters such as hepatic sulfhydryl content, GSH depletion, total bilirubin, urea nitrogen, and creatinine. Gene array analyses revealed that microcystin affects genes related to actin organization, cell cycle, apoptosis, cellular redox potential, cell signalling, albumin metabolism, glucose homeostasis pathway and organic anion transport polypeptide system. In combination with a further proteomics approach the proteomic analyses indicate that liver apoptosis induced by microcystin can be induced by two pathways: the BID-BAX-BCL2 and the reactive oxygen species pathway. The reviewed data clearly show that microcystin, especially MC-LR is able to cause severe adverse impacts on laboratory rodents and therefore there is an emerging need for further research to cover the major concern about cyanobacterial water blooms affecting mammals including human beings

    Impacts of dietary cyanobacteria on fish

    No full text
    Development of cyanobacterial water bloom became a common issue all over the world. Cyanobacteria are the most important primary producers in aquatic ecosystems but in some abundant species their secondary metabolites called cyanotoxins seem to be harmful for many animal groups especially mammals but also fish. In fishes, adverse effects have been demonstrated in several studies applying cyanotoxins by unnatural injection. However, cyanobacteria and fish coevolved during ages and therefore the question arises whether cyanobacteria might be even used for fish via oral application (fish diet). The use of cyanobacteria for fish diets is varying including applications of pure cyanobacteria biomass as well as incorporation of cyanotoxin containing cyanobacteria biomass into commercial fish diet. The impacts of cyanobacteria in fish diets administered via the oral route revealed contradictory findings ranging from moderate negative to growth promoting impacts and it seems that any bioaccumulation of microcystins can become depurated by rearing fish in clean water for a short period. According to the results obtained from various experiments, cyanobacteria as primary producers might be used as a component of fish diets especially concerning partial replacement of fish meal. However, the determination of nutrition value and the bioavailibility of nutrients present in cyanobacteria for different fish species needs to be determined. Furthermore thorough research is needed to exclude any harmful problem for the final consumers – humans

    Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification

    No full text
    The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed

    Assessment of ranges plasma indices in rainbow trout (Oncorhynchus mykiss) reared under conditions of intensive aquaculture

    No full text
    Plasma parameters in rainbow trout (Oncorhynchus mykiss) from three various trout farms in the Czech Republic were assessed using automated blood plasma analyser. Non-haemolysed serum from the heart of 48 healthy, randomly selected fish (standard length, mean ± SD = 247.3 ± 24.2 mm; body mass, mean ± SD = 262.18 ± 87.28 g) was analysed for the following plasma parameters: alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, acid phosphatase, lactate dehydrogenase, creatine kinase, total protein, cholinesterase, amylase, glucose, lactate, albumin, urea, cholesterol, triglycerides, lipase, Ca, Mg, P, Fe, Na, K and Cl. All data were analysed statistically such as normality assessment by means of Kolmogorov–Smirnov test and adequate statistical testing using various parametric and non-parametric tests for each variable. With regard to data distribution, 19 indices out of 23 (aspartate aminotransferase, alkaline phosphatase, acid phosphatase, lactate dehydrogenase, total protein, amylase, glucose, lactate, albumin, urea, cholesterol, triglycerides, Ca, Mg, P, Fe, Na, K and Cl) were normally distributed. The indices were affected by handling time and, accordingly to the physical and chemical properties of water. Estimates obtained were compared with previously reported ranges. The blood automated analyser proved to be a valuable and reliable instrument for the estimation of plasma parameters determining normal ranges in rainbow trout

    Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification

    No full text
    The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed

    Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification

    No full text
    The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed
    corecore