82 research outputs found

    La conservación de la sustancia y el camino hacia su adquisición en distintos grupos etarios

    Get PDF
    La importancia del concepto "conservación" reside en que gran parte de los problemas de química requieren la aplicación de la ley de conservación de la masa. La enunciación de la ley de conservación de la masa, contribuyó a la creación de un sistema satisfactorio para el estudio de las combinaciones químicas, elaboración de un lenguaje metódico y preciso que favoreció el advenimiento de una ciencia con bases cuantitativas y demostrables experimentalmente. La construcción de conceptos científicos es uno de los pilares del proceso de aprendizaje, por lo cual este trabajo tiene por objetivo analizar cómo construyen los estudiantes el concepto de conservación, buscando mejorar los procesos de enseñanza y aprendizaje. El estudio, de sesgo exploratorio, describe los razonamientos sobre "conservación de la sustancia", analizando su evolución a lo largo de diferentes etapas cognitivas. Para ello, se realizaron entrevistas a niños de 5, 10 y 15 años en base a experimentos donde la materia sufre un cambio. El análisis de las entrevistas se realizó acudiendo a la teoría psicogenética de Piaget, que permitió iluminar las características cognitivas de cada grupo etario, encontrando que la adquisición del concepto está obstaculizada por factores relacionados con capacidades cognitivas, centramiento perceptivo o de índole cotidiano.Facultad de Humanidades y Ciencias de la Educació

    Tungsten Catalysts for Visible Light Driven Ofloxacin Photocatalytic Degradation and Hydrogen Production

    Get PDF
    Some tungsten catalysts of interest that are synthesized are bismuth tungstate (BT) and Tetrabutylammonium decatungstate (TBADT), using two consolidated procedures. BT is used as a photo-catalyst for the simulated solar light degradation of ofloxacin (OFL) antibiotic under relevant real conditions (µg L−1, fresh water) with the limit of 0.05 g L−1 of catalyst. A quantitative drug decomposition occurred following a bi-exponential first-order law, with an efficiency comparable with the most used P25 TiO2 catalyst. The photocatalytic profiles of OFL at µg L−1 and mg L−1 were monitored by high-pressure liquid chromatography (HPLC) coupled with fluorescence (FD) and ultraviolet (UV) detectors. Additionally, the main photoproducts were identified by high-pressure liquid chromatography coupled to electrospray ionization in tandem with mass spectrometry (HPLC-ESI-MS/MS). The catalyst Tetrabutylammonium decatungstate (TBADT) was used as a catalyst to produce hydrogen from glucose and 2-propanol in aqueous solution, providing hydrogen gas evolution up to 10 µmol g−1 h−1

    HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica

    Get PDF
    In this study, a sensitive and multiclass method has been developed for analysis of three families of steroid hormones, i.e. progestins, oestrogens, androgens, by SPE-HPLC-ESI-MS/MS. The extraction efficiency of thermally condensed humic acids onto silica sorbent (HA-C@silica), here for the first time studied for multiclass enrichment of these sex hormones, was tested in different environmental waters (tap and river water, urban wastewater treatment plant effluent) spiked at the nanograms per litre levels (5–1000 ng L−1). Quantitative adsorption was achieved using 200 mg sorbent for preconcentration of 250–1000 mL sample, at the native pH (pH = 6.5–7.7). Elution was performed by two sequential fractions (methanol followed by acetonitrile), obtaining in all the matrices investigated satisfactory recoveries (71% to 124% for river waters and 71–113% for urban wastewater treatment plant effluent) and RSDs below 15% (n = 3). The high enrichment factors (up to 4000) coupled with high-performance liquid chromatography tandem mass spectrometry quantification (MRM mode) provided low limits of detection and quantification (a few ng L−1), that are suitable for environmental monitoring. Most of the analytes were detected in river water and in wastewater effluent samples (in the ng L−1 concentration range), attesting their environmental diffusion. The proposed method was extended to a fourth class, Glucocorticoids, achieving good results in river samples, by the same SPE cartridge and chromatographic run. Keywords: Environmental waters, Steroid hormones, Multiclass determination, HPLC-MS, Pollutants, Solid-phase extractio

    Heterogeneous Photochemistry: Solar Energy Conversion and Environmental Remediation

    Get PDF
    1Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy 2Department of Analytical Chemistry, University of Zagreb, Marulicev Trg 20, 10000 Zagreb, Croatia 3Department of Civil and Environmental Engineering, University of Cyprus, Kallipoleos Street 75, 1678 Nicosia, Cyprus 4Department of Chemical and Environmental Engineering, Institute Center for Water and Environment (iWater), Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, UA

    Solid-phase extraction of PFOA and PFOS from surface waters on functionalized multi-walled carbon nanotubes followed by UPLC-ESI-MS

    Get PDF
    This is the first report on the analytical application of multiwalled carbon nanotubes (MWCNTs) as solid-phase extraction (SPE) sorbents for determination in surface waters, at the nanograms per litre level, of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the two predominant contaminants among the perfluorinated compounds detected. After the preconcentration step, the quantification was achieved by ultraperformance liquid chromatography– electrospray ionization mass spectrometry. To increase the extraction efficiency towards these amphiphilic compounds, MWCNTs were derivatized with amino-terminated alkyl chains, thus producing a mixed-mode material (MWCNT-RNH2) combining hydrophobic affinity and anion-exchange properties. Experiments with distilled, tap and river water (pH 3) spiked at different concentrations (10, 15, 30, 100, 200 and 500 ng L-1) provided absolute recoveries in the range 71–102 % (n=3, relative standard deviations less than 10 %). Analytes were eluted in a single fraction with 6 mL methanol (3×10-4 M NaOH). The within-laboratory reproducibility of the MWCNT-R-NH2 SPE sorbent was evaluated with raw river water, and relative standard deviations less than 15 % were obtained (n=4). Preconcentration factors up to 125 (500-mL sample) made it possible to quantify PFOA and PFOS at low nanograms per litre levels in naturally contaminated river water. The method quantification limits of 10 ng L-1 for PFOA and 15 ng L-1 for PFOS were well below the advisory levels for drinking and surface waters. Comparison with non-derivatized MWCNTs highlighted the role of functionalization in improving the adsorption affinity towards these contaminants. MWCNT-R-NH2 maintained their extraction capability for at least eight repeated adsorption/desorption cycles

    Intermolecular interactions of substituted benzenes on multi-walled carbon nanotubes grafted on HPLC silica microspheres and interaction study through artificial neural networks

    Get PDF
    Purified multi-walled carbon nanotubes (MWCNTs) grafted onto silica microspheres by gamma-radiation were applied as a HPLC stationary phase for investigating the intermolecular interactions between MWCNTs and substituted benzenes. The synthetic route, simple and not requiring CNTs derivatization, involved no alteration of the nanotube original morphology and physical–chemical properties. The affinity of a set of substituted benzenes for the MWCNTs was studied by correlating the capacity factor (k′) of each probe to its physico-chemical characteristics (calculated by Density Functional Theory). The correlation was found through a theoretical approach based on feedforward neural networks. This strategy was adopted because today these calculations are easily affordable for small molecules (like the analytes), and many critical parameters needed are not known. This might increase the applicability of the proposed method to other cases of study. Moreover, it was seen that the normal linear fit does not provide a good model. The interaction on the MWCNT phase was compared to that of an octadecyl (C18) reversed phase, under the same elution conditions. Results from trained neural networks indicated that the main role in the interactions between the analytes and the stationary phases is due to dipole moment, polarizability and LUMO energy. As expected for the C18 stationary phase correlation, is due to dipole moment and polarizability, while for the MWCNT stationary phase primarily to LUMO energy followed by polarizability, evidence for a specific interaction between MWCNTs and analytes. The CNT-based hybrid material proved to be not only a chromatographic phase but also a useful tool to investigate the MWCNT-molecular interactions with variously substituted benzenes. Keywords: Carbon nanotubes, Feedforward neural networks, Intermolecular interaction, Liquid chromatograph

    Tuning retention and selectivity in reversed-phase liquid chromatography by using functionalized multi-walled carbon nanotubes

    Get PDF
    Aim of this work was to explore the possibility of retention and selectivity tuning in reversed-phase liquid chromatography by means of chemically modified multi-walled carbon nanotubes (MWCNTs). These were synthesized by derivatizing pristine MWCNTs with amino-terminated alkyl chains containing polar embedded groups. A novel hybrid material based on functionalized MWCNTs (MWCNTs-R-NH2) was prepared, characterized and tested. The idea was to design a mixed-mode separation medium basing its sorption properties on the peculiar characteristics of MWCNTs combined with the chemical interactions provided by the functional chains introduced on the nanotube skeleton. MWCNTs-R-NH2 were easily grafted to silica microspheres by gamma radiation (using a 60Co source) in the presence of polybutadiene as the linking agent. The composite was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) analysis in terms of structural morphology, surface area and porosity. The MWCNTs-R-NH2 sorbent was tested as stationary phase. The reversed-phase behaviour was first proved by analysis of alkylbenzenes, while the key role of CNT derivatization in addressing the selectivity/affinity towards the solutes was evidenced by testing three classes of analytes, viz. barbiturates, steroid hormones and alkaloids. These compounds, with different molecular structure and polarity, were here analysed for the first time on CNT-based LC stationary phases. The behaviour of the novel sorbent was compared in terms of retention capability and resolution with that observed using unmodified MWCNTs, pointing out the mixed-mode characteristics of the MWCNTs-R-NH2 material. The same test mixtures were analysed also on a conventional mono-modal separation sorbent (C18) to highlight the particular behaviour of the (derivatized)MWCNTs-based stationary phases. The novel material showed better performance in separation of polar compounds, i.e. barbiturates and alkaloids, than the unmodified MWCNTs and than the C18 column. Results showed that MWCNT functionalization is powerful to modulate retention/selectivity in reversed-phase liquid chromatography. Keywords: Functionalized carbon nanotubes, Liquid chromatography, Mixed-mode stationary phase

    Solid-phase extraction of vanadium(V) from teainfusions and wines on immobilized nanometer titanium dioxide followed by ICP-OES analysis

    Get PDF
    Nanosized titanium dioxide immobilized on silica gel was synthesized and used as fixedbed phase for V(V) pre-concentration, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. Three different sorbents were prepared by sol\u2013gel method starting from a mixture of titanium isopropoxide, 2-propanol and water, and characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and BET analysis. V(V), the most stable and toxic oxidation state of the element, present in water and beverages samples, was selectively sorbed, pre-concentrated, quantitatively eluted by 0.1 M HCl and analyzed by ICP-OES. The effectiveness of the procedure was first assessed on tap water enriched with 1 lg L1 of V(V) obtaining recoveries up to 92% (n= 4). The pre-concentration step was then optimized for complex matrices such as tea infusions and red and white wines. The reliability of the procedure was assessed on the same beverages samples spiked with 20\u2013250 lg L1. Quantitative recoveries (82\u2013 95%, n= 4) were assured avoiding any sample pre-treatment, generally essential in such complex matrices, obtaining good precision (RSD< 12%, n= 3). The method was then applied to the determination of V(V) in commercial tea infusions and wines

    Pyrolytic Formation of TiO2/Carbon Nanocomposite from Kraft Lignin: Characterization and Photoactivities

    Get PDF
    This article reports on the formation of pyrolytic carbon/TiO2 nanocomposite (p-C/TiO2) by pyrolysis of a mixture of the P25 TiO2 and kraft lignin at 600 °C. The result was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-visible spectroscopy, electron paramagnetic resonance spectrometry (EPR), thermogravimetry (TGA) and SEM microscopy. Its photocatalytic activity was ascertained using three classes of chemical probes, namely (i) degradation of methylene blue (MB) and rhodamine-B (RhB) dyes in UV light-irradiated aqueous suspensions, (ii) depletion of phenol and (iii) degradation of antibiotics. The p-C/TiO2 nanocomposite is a strong phisisorbent of both MB and RhB nearly twofold with respect to neat TiO2. Although it is nearly twofold more photoactive toward the degradation of MB (0.091 min−1 versus 0.047 min−1), it is not with regard to RhB degradation (0.064 min−1 versus 0.060 min−1). For the degradation of phenol in aqueous media (pH 3), pristine TiO2 was far more effective than p-C/TiO2 for oxygenated suspensions (17.6 × 10−3 mM min−1 versus 4.3 × 10−3 mM min−1). Under an argon atmosphere, the kinetics were otherwise identical. The activity of the material was tested also for a real application in the degradation of a fluoroquinolone antibiotic such as enrofloxacin (ENR) in tap water. It is evident that the photoactivity of a semiconductor photocatalyst is not a constant, but it does depend on the nature of the substrate used and on the experimental conditions. It is also argued that the use of dyes to assess photocatalytic activities when suspensions are subjected to visible light irradiation is to be discouraged as the dyes act as electron transfer photosensitizers and or can undergo photodegradation from their excited states

    Enhancement of TiO2 NPs Activity by Fe3O4 Nano-Seeds for Removal of Organic Pollutants in Water

    Get PDF
    The enhancement of the photocatalytic activity of TiO2 nanoparticles (NPs), synthesized in the presence of a very small amount of magnetite (Fe3O4) nanoparticles, is here presented and discussed. From X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses, the crystallinity of TiO2 nanoparticles (NPs) seems to be affected by Fe3O4, acting as nano-seeds to improve the tetragonal TiO2 anatase structure with respect to the amorphous one. Photocatalytic activity data, i.e., the degradation of methylene blue and the Ofloxacin fluoroquinolone emerging pollutant, give evidence that the increased crystalline structure of the NPs, even if correlated to a reduced surface to mass ratio (with respect to commercial TiO2 NPs), enhances the performance of this type of catalyst. The achievement of a relatively well-defined crystal structure at low temperatures (Tmax = 150 \u25e6C), preventing the sintering of the TiO2 NPs and, thus, preserving the high density of active sites, seems to be the keystone to understand the obtained results
    corecore