49 research outputs found

    An abstract argumentation approach for the prediction of analysts’ recommendations following earnings conference calls

    Get PDF
    Financial analysts constitute an important element of financial decision-making in stock exchanges throughout the world. By leveraging on argumentative reasoning, we develop a method to predict financial analysts' recommendations in earnings conference calls (ECCs), an important type of financial communication. We elaborate an analysis to select those reliable arguments in the Questions Answers (QA) part of ECCs that analysts evaluate to estimate their recommendation. The observation date of stock recommendation update may variate during the next quarter: it can be either the day after the ECC or it can take weeks. Our objective is to anticipate analysts' recommendations by predicting their judgment with the help of abstract argumentation. In this paper, we devise our approach to the analysis of ECCs, by designing a general processing framework which combines natural language processing along with abstract argumentation evaluation techniques to produce a final scoring function, representing the analysts' prediction about the company's trend. Then, we evaluate the performance of our approach by specifying a strategy to predict analysts recommendations starting from the evaluation of the argumentation graph properly instantiated from an ECC transcript. We also provide the experimental setting in which we perform the predictions of recommendations as a machine learning classification task. The method is shown to outperform approaches based only on sentiment analysis

    Optimal Torque-Vectoring Control Strategy for Energy Efficiency and Vehicle Dynamic Improvement of Battery Electric Vehicles with Multiple Motors

    Get PDF
    Electric vehicles comprising multiple motors allow the individual wheel torque allocation, i.e. torque-vectoring. Powertrain configurations with multiple motors provide additional degree of freedom to improve system level efficiencies while ensuring handling performances and active safety. However, most of the works available on this topic do not simultaneously optimize both vehicle dynamic performance and energy efficiency while considering the real-time implementability of the controller. In this work, a new and systematic approach in designing, modeling, and simulating the main layers of a torque-vectoring control framework is introduced. The high level control combines the actions of an adaptive Linear Quadratic Regulator (A-LQR) and of a feedforward controller, to shape the steady-state and transient vehicle response by generating the reference yaw moment. A novel energy efficient torque allocation method is proposed as a low level controller. The torque is allocated on each wheel by solving a quadratic programming problem. The latter is solved in real-time to guarantee the desired yaw moment and the requested driver power demand while minimizing the system losses. The objective function of the quadratic problem accounts for the efficiency map of the electric machine as well as the dissipations due to tire slip phenomena. The torque-vectoring is evaluated in a co-simulation environment. Matlab/Simulink is used for the control strategy and VI-CarRealTime for the vehicle model and driver. The vehicle model represents a high performance pure electric SUV with four e-motors. The performance of the proposed controller is assessed using open loop maneuvers and in closed loop track lap scenarios. The results demonstrate that the proposed controller enhances the vehicle’s performance in terms of handling. Additionally, a significant improvement in energy saving in a wide range of lateral acceleration conditions is: presented. Moreover, the control strategy is validated using rapid control prototyping, thus guaranteeing a deterministic real-time implementation

    A novel integrated industrial approach with cobots in the age of industry 4.0 through conversational interaction and computer vision

    Get PDF
    From robots that replace workers to robots that serve as helpful colleagues, the field of robotic automation is experiencing a new trend that represents a huge challenge for component manufacturers. The contribution starts from an innovative vision that sees an ever closer collaboration between Cobot, able to do a specific physical job with precision, the AI world, able to analyze information and support the decision-making process, and the man able to have a strategic vision of the future

    SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival

    Get PDF
    Expression of the solute carrier (SLC) transporter SLC22A3 gene is associated with overall survival of pancreatic cancer patients. This study tested whether genetic variability in SLC22A3 associates with pancreatic cancer risk and prognosis. Twenty four single nucleotide polymorphisms (SNPs) tagging the SLC22A3 gene sequence and regulatory elements were selected for analysis. Of these, 22 were successfully evaluated in the discovery phase while six significant or suggestive variants entered the validation phase, comprising a total study number of 1,518 cases and 3,908 controls. In the discovery phase, rs2504938, rs9364554, and rs2457571 SNPs were significantly associated with pancreatic cancer risk. Moreover, rs7758229 associated with the presence of distant metastases, while rs512077 and rs2504956 correlated with overall survival of patients. Although replicated, the association for rs9364554 did not pass multiple testing corrections in the validation phase. Contrary to the discovery stage, rs2504938 associated with survival in the validation cohort, which was more pronounced in stage IV patients. In conclusion, common variation in the SLC22A3 gene is unlikely to significantly contribute to pancreatic cancer risk. The rs2504938 SNP in SLC22A3 significantly associates with an unfavorable prognosis of pancreatic cancer patients. Further investigation of this SNP effect on the molecular and clinical phenotype is warranted

    ECC Tone Dataset

    No full text
    csv containing tone values categorie

    Introducing the Monitoring Equipment Mask Environment

    No full text
    Filter face masks are Respiratory Protective Equipment designed to protect the wearer from various hazards, suit various health situations, and match the specific requirements of the wearer. Current traditional face masks have several limitations. In this paper, we present (ME)2, the Monitoring Equipment Mask Environment: an innovative reusable 3D-printed eco-sustainable mask with an interchangeable filter. (ME)2 is equipped with multiple vital sensors on board, connected to a system-on-a-chip micro-controller with computational capabilities, Bluetooth communication, and a rechargeable battery that allows continuous monitoring of the wearer’s vital signs. It monitors body temperature, heart rate, and oxygen saturation in a non-invasive, strategically positioned way. (ME)2 is accompanied by a mobile application that provides users’ health information. Furthermore, through Edge Computing Artificial Intelligence (Edge AI) modules, it is possible to detect an abnormal and early symptoms linked to possible pathologies, possibly linked to the respiratory or cardiovascular tract, and therefore perform predictive analysis, launch alerts, and recommendations. To validate the feasibility of embedded in-app Edge AI modules, we tested a machine learning model able to distinguish COVID-19 versus seasonal influenza using only vital signs. By generating new synthetic data, we confirm the highly reliable performances of such a model, with an accuracy of 94.80%

    Synthesis of argumentation graphs by matrix factorization

    No full text
    In the phase of evaluation of accepted arguments, one may find that not all the arguments of discussion are essential when drawing conclusions. Especially when the cardinality of the set of arguments is high, the task of identifying the most relevant arguments of the whole discussion in huge Argument Systems through the analysis of its synthesis may favor better interpretability and may allow us to extract semantics that include the the strongest arguments. We propose a new matrix interpretation of argumentation graphs and exploit a matrix decomposition technique, i.e. the Singular Value Decomposition, in order to yield a synthetized argument system with only the most prominent arguments
    corecore