163 research outputs found

    The lung in amyloidosis

    Get PDF
    Amyloidosis is a disorder caused by misfolding of autologous protein and its extracellular deposition as fibrils, resulting in vital organ dysfunction and eventually death. Pulmonary amyloidosis may be localised or part of systemic amyloidosis.Pulmonary interstitial amyloidosis is symptomatic only if the amyloid deposits severely affect gas exchange alveolar structure, thus resulting in serious respiratory impairment. Localised parenchymal involvement may be present as nodular amyloidosis or as amyloid deposits associated with localised lymphomas. Finally, tracheobronchial amyloidosis, which is usually not associated with evident clonal proliferation, may result in airway stenosis.Because the treatment options for amyloidosis are dependent on the fibril protein type, the workup of all new cases should include accurate determination of the amyloid protein. Most cases are asymptomatic and need only a careful follow-up. Diffuse alveolar-septal amyloidosis is treated according to the underlying systemic amyloidosis. Nodular pulmonary amyloidosis is usually localised, conservative excision is usually curative and the long-term prognosis is excellent. Tracheobronchial amyloidosis is usually treated with bronchoscopic interventions or external beam radiation therapy

    dysferlin in a hyperckaemic patient with caveolin 3 mutation and in c2c12 cells after p38 map kinase inhibition

    Get PDF
    Dysferlin is a plasma membrane protein of skeletal muscle whose deficiency causes Miyoshi myopathy, limb girdle muscular dystrophy 2B and distal anterior compartment myopathy. Recent studies have reported that dysferlin is implicated in membrane repair mechanism and coimmunoprecipitates with caveolin 3 in human skeletal muscle. Caveolin 3 is a principal structural protein of caveolae membrane domains in striated muscle cells and cardiac myocytes. Mutations of caveolin 3 gene (CAV3) cause different diseases and where caveolin 3 expression is defective, dysferlin localization is abnormal. We describe the alteration of dysferlin expression and localization in skeletal muscle from a patient with raised serum creatine kinase (hyperCKaemia), whose reduction of caveolin 3 is caused by a CAV3 P28L mutation. Moreover, we performed a study on dysferlin interaction with caveolin 3 in C2C12 cells. We show the association of dysferlin to cellular membrane of C2C12 myotubes and the low affinity link between dysferlin and caveolin 3 by immunoprecipitation techniques. We also reproduced caveolinopathy conditions in C2C12 cells by a selective p38 MAP kinase inhibition with SB203580, which blocks the expression of caveolin 3. In this model, myoblasts do not fuse into myotubes and we found that dysferlin expression is reduced. These results underline the importance of dysferlin-caveolin 3 relationship for skeletal muscle integrity and propose a cellular model to clarify the dysferlin alteration mechanisms in caveolinopathies

    Carotid intima media thickness with no cardiovascular disease in HIV-infected patients correlates with a hyperactivated/pro-apoptotic T-cell phenotype

    Get PDF
    Background HIV-infected patients may be at increased risk of cardiovascular disease (CVD), and present higher carotid intima media thickness (IMT) compared with healthy controls. Besides clinical and metabolic factors, atherosclerosis in HIV is influenced by immune and inflammatory parameters. Given that T-cell activation correlates with CVD and HIV accounts for heightened T-cell hyperactivation, we hypothesized that early IMT increases associate to T-cell hyperactivation

    Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results

    Get PDF
    Six individuals with Ullrich congenital muscular dystrophy (UCMD) and mutations in the genes-encoding collagen VI, aging 5–9, received 3–5 mg/kg of cyclosporine A (CsA) daily for 1 to 3.2 years. The primary outcome measure was the muscle strength evaluated with a myometer and expressed as megalimbs. The megalimbs score showed significant improvement (P = 0.01) in 5 of the 6 patients. Motor function did not change. Respiratory function deteriorated in all. CsA treatment corrected mitochondrial dysfunction, increased muscle regeneration, and decreased the number of apoptotic nuclei. Results from this study demonstrate that long-term treatment with CsA ameliorates performance in the limbs, but not in the respiratory muscles of UCMD patients, and that it is well tolerated. These results suggest considering a trial of CsA or nonimmunosuppressive cyclosporins, that retains the PTP-desensitizing properties of CsA, as early as possible in UCMD patients when diaphragm is less compromised

    Prospective urinary albumin/creatinine ratio for diagnosis, staging, and organ response assessment in renal AL amyloidosis: results from a large cohort of patients

    Get PDF
    Abstract Objectives Quantification of 24 h-proteinuria is the gold standard for diagnosing, staging, and monitoring of patients with renal AL amyloidosis. However, 24 h-urine collection is cumbersome and may result in preanalytical error. In this prospective study, we investigated the role of urinary albumin/creatinine ratio (UACR) (cut-off: 300 mg/g) identifying renal involvement, evaluated a UACR-based staging system (UACR cut-off: 3,600 mg/g) and assessed whether UACR response (UACR decrease >30% without worsening in eGFR >25%) predicts renal outcome in 531 patients with newly-diagnosed AL amyloidosis. Methods From October 2013 paired 24 h-proteinuria and UACR (on first morning void) were measured in all newly-diagnosed patients with AL amyloidosis. Correlation between 24 h-proteinuria and UACR at baseline was assessed by Pearson's r test. Impact of UACR response on renal outcome was assessed in randomly created testing (n=354) and validation (n=177) cohorts. Results A strong linear correlation was found between 24 h-proteinuria and UACR at baseline (r=0.90; p<0.001). After a median follow-up of 31 months, 57 (11%) patients required dialysis. A UACR-based renal staging system identified three stages with significantly higher dialysis rate at 36 months comparing stage I with stage II and stage II with stage III. Achieving a renal response, according to a UACR-based criterion, resulted in lower dialysis rate in both testing and validation cohorts. Conclusions UACR is a reliable marker for diagnosis, prognosis, and organ response assessment in renal AL amyloidosis and can reliably replace 24 h-proteinuria in clinical trials and individual patients' management

    Muscle quantitative MRI as a novel biomarker in hereditary transthyretin amyloidosis with polyneuropathy: a cross-sectional study

    Get PDF
    BACKGROUND: The development of reproducible and sensitive outcome measures has been challenging in hereditary transthyretin (ATTRv) amyloidosis. Recently, quantification of intramuscular fat by magnetic resonance imaging (MRI) has proven as a sensitive marker in patients with other genetic neuropathies. The aim of this study was to investigate the role of muscle quantitative MRI (qMRI) as an outcome measure in ATTRv. METHODS: Calf- and thigh-centered multi-echo T2-weighted spin-echo and gradient-echo sequences were obtained in patients with ATTRv amyloidosis with polyneuropathy (n = 24) and healthy controls (n = 12). Water T2 (wT2) and fat fraction (FF) were calculated. Neurological assessment was performed in all ATTRv subjects. Quantitative MRI parameters were correlated with clinical and neurophysiological measures of disease severity. RESULTS: Quantitative imaging revealed significantly higher FF in lower limb muscles in patients with ATTRv amyloidosis compared to controls. In addition, wT2 was significantly higher in ATTRv patients. There was prominent involvement of the posterior compartment of the thighs. Noticeably, FF and wT2 did not exhibit a length-dependent pattern in ATTRv patients. MRI biomarkers correlated with previously validated clinical outcome measures, Polyneuropathy Disability scoring system, Neuropathy Impairment Score (NIS) and NIS-lower limb, and neurophysiological parameters of axonal damage regardless of age, sex, treatment and TTR mutation. CONCLUSIONS: Muscle qMRI revealed significant difference between ATTRv and healthy controls. MRI biomarkers showed high correlation with clinical and neurophysiological measures of disease severity making qMRI as a promising tool to be further investigated in longitudinal studies to assess its role at monitoring onset, progression, and therapy efficacy for future clinical trials on this treatable condition

    Outcomes of renal transplantation in patients with AL amyloidosis: an international collaboration through The International Kidney and Monoclonal Gammopathy Research Group

    Get PDF
    Effective systemic therapies suppress toxic light chain production leading to an increased proportion of patients with light chain (AL) amyloidosis who survive longer albeit with end-stage renal disease. There is a critical need to identify patients in this population who benefit from renal transplantation. This multicenter, observational study from five countries includes 237 patients with AL amyloidosis who underwent renal transplantation between 1987 and 2020. With a median follow-up of 8.5 years, the median overall survival from renal transplantation was 8.6 years and was significantly longer in patients with complete and very good partial hematologic responses (CR + VGPR) compared to less than VGPR (9 versus 6.8 years; HR: 1.5, P = 0.04 [95% CI: 1–2.1]) at renal transplantation. Median graft survival was 7.8 years and was better in the CR + VGPR group (8.3 vs 5.7 years, HR: 1.4, P = 0.05 [95% CI: 1–2]). The frequency and time to amyloid recurrence in the graft was also lower (16% vs 37%, p = 0.01) and longer (median time not achieved vs 10 years, p = 0.001) in the CR + VGPR group. Comparing CR vs. VGPR there was no difference in overall or graft survival. Although 69 patients (29%) experienced hematologic relapse, treatment effectively prevented graft loss in the majority (87%). Renal transplantation in selected AL amyloidosis patients is associated with extended overall and renal graft survival. Patients with hematologic CR or VGPR have the most favorable outcomes, and these patients should be considered for renal transplantation

    Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis

    Get PDF
    © The Author(s) 2021.Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity.This study was supported by a grant from CARIPLO “Molecular mechanisms of Ig toxicity in age-related plasma cell dyscrasias no. 2015-0591”, by a grant from the Black Swan Research Initiative from the International Myeloma Foundation “Automated multidimensional flow cytometry for high-sensitive screening and to monitor response in AL amyloidosis”, by a grant from CARIPLO “Structure–function relation of amyloid: understanding the molecular bases of protein misfolding diseases to design new treatments no. 2013-0964”, by a grant from the Amyloidosis Foundation “Investigating new therapies to treat AL amyloidosis”, and by a grant from Cancer Research UK, FCAECC and AIRC under the Accelerator Award 2017 Program “Early detection and intervention: understanding the mechanisms of transformation and hidden resistance of incurable hematological malignancies”, by a grant from CARIPLO “Harnessing the plasma cell secretory capacity against systemic light chain amyloidosis” (no. 2018-0257), by a grant from the Italian Ministry of Health “Towards effective, patient-tailored anti-plasma cell therapies in AL amyloidosis: predicting drug response and overcoming drug resistance” (GR-2018-12368387). This study has also supported the Centro de Investigación Biomédica en Red—Área de Oncología—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00400, and CB16/12/00489) and the Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS No. PI13/02196). G.P. is supported in part by the Bart Barlogie Young Investigator Award from the International Myeloma Society (IMS). P.M. is supported in part by a fellowship grant form Collegio Ghislieri (Pavia). We acknowledge the study coordinator and data manager Anna Carnevale Baraglia
    corecore